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Abstract

Standard approaches to sequential decision-making exploit an agent’s ability to continually in-

teract with its environment and improve its control policy. However, due to safety, ethical, and

practicality constraints, this type of trial-and-error experimentation is often infeasible in many

real-world domains such as healthcare and robotics. Instead, control policies in these domains

are typically trained offline from previously logged data or in a growing-batch manner. In this set-

ting a fixed policy is deployed to the environment and used to gather an entire batch of new

data before being aggregated with past batches and used to update the policy. This improvement

cycle can then be repeated multiple times. While a limited number of such cycles is feasible in

real-world domains, the quantity and diversity of the resulting data are much lower than in the

standard continually-interacting approach. However, data collection in these domains is often

performed in conjunction with human experts, who are able to label or annotate the collected

data. In this paper, we first explore the trade-offs present in this growing-batch setting, and

then investigate how information provided by a teacher (i.e., demonstrations, expert actions, and

gradient information—differentiated with respect to actions) can be leveraged at training time to

mitigate the sample complexity and coverage requirements for actor-critic methods. We validate

our contributions on tasks from the DeepMind Control Suite.

Background

In most real-world applications of RL,

Continual improvement of decision-making policies during environmental interaction is

infeasible due to resource/safety constraints

Policies are learned in an offline or a growing-batch manner

Learning optimal policies is difficult due to limited opportunities for online self-corrections

Motivation

In many domains, well-informed/task-specific

knowledge exists and can be queried

An external teacher can help alleviate some

of these issues, providing external

corrective feedback

Teachers can be represented as human, RL

agent, or program

Expert knowledge by the teacher can be
provided

1. Up-front via demonstrations, or

2. Throughout the life-cycle of the student agent via
annotations

How can we leverage teachers to improve the sample efficiency and performance of value-

based RL agents learned in the growing-batch setting?
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Figure 1. Growing-batch RL with teacher annotations. The policy and (optionally) critic networks are first initialized

from offline data; in our work we use an offline dataset of teacher demonstrations. Within each cycle, a fixed policy

πθk−1 is deployed within the environment and used to gather data in the replay buffer Dk. Data from previous cycles

are then aggregated (i.e., ∪k
i=1Di) along with per-transition teacher annotations, and used to update the policy and

critic networks, πθk
and Qφk

, respectively. The forms of annotations are teacher-suggested actions and teacher–

provided critic gradients differentiated with respect to actions.

Actor Critic Agents

For our experiments, we primarily utilize D4PG agents to accommodate continuous actions,

where we

1. Learn a critic Qφ(s, a) via distributional TD-Learning, where Qφ(s, a) = EZφ(s, a) and Zφ(s, a)
is estimated by minimizing the distributional TD error

L(φ) = Es∼ρπ

[
d
(

Tπθ′Zφ′(s, a), Zφ(s, a)
) ]

2. Learn a parametric policy πθ using the deterministic policy gradient (DPG)

∇θJ (θ) = Es∼ρπ

[
∇θπθ(s)∇aQφ(s, a)

∣∣
a=πθ(s)

]
where J (θ) = E(s,a)∼D [Qπθ(s, a)] is the expected return.

DeepMind Control Suite
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Figure 2. The DeepMind Control Suite environments used in our experiments.

Evaluated experiments on six control suite environments

Fixed the total number of actor steps to 2M, which is the value needed to solve the task by an online agent

Selected the total number of SGD steps to match the sample per insert (SPI) ratio of 32

BC-Policy Regularization (Blissful Ignorance)

Assuming that the BC-initialized policy is

sub-optimal, we would like the agent to surpass

it’s performance:

Incorporated an exponential decay weight α ∈ (0, 1) as
a hyper-parameter

J (θk) =(1 − α)JD4PG(θk)

+ α Es∼ρπ

[
‖πBC(s) − πθk

(s)‖2
2

]
︸ ︷︷ ︸

BC regularizer

By treating α as a function of total learner steps,

1. We first stay close to the initialized policy

2. Then, gradually prioritize solely learning from the
DPG loss component

(a) All Environments, Number of cycles = 4

Figure 3. Baseline with BC initialization only vs. BC-policy

regularizer with decay rate = 1 and decay rate = 5.

Filtered Teacher-Suggested Actions

We explore using a Q-filter to determine which

loss component (Teacher-action vs. D4PG) to

learn from for a given transition:

∇J (θk) =
Es∼ρπ

[ [
1 − δ(s)

]
∇θk

πθk
∇aQφk

(s, a)
∣∣
a=πθk

(s)︸ ︷︷ ︸
D4PG component

+ δ(s)∇θk
‖a∗ − πθk

(s)‖2
2︸ ︷︷ ︸

Teacher-action component

]
,

where δ(s) = 1
[
Qφk

(s, a∗) ≥ Qφk
(s, πθ(s))

]
is a

Q-filter.

Ignore (or de-prioritize) learning from actions that

produce lower values than using πθk
(s)

(a) All Environments, Number of Cycles = 4

Figure 4. Baseline using BC-policy regularizer vs. Filtered

Teacher-action vs. Teacher-action auxiliary loss with

decay rate = 1, and decay rate = 5.

Teacher-gradient Annotations

We consider directly incorporating gradient

information Ga(s, a) differentiated with respect
to actions a provided by the teacher.

∇J (θk) =
Es∼D

[
(1 − α)∇θk

πθk
∇aQφk

(s, a)
∣∣
a=πθk

(s)

+ α Ga(s, πθk
(s))∇θk

πθk
(s)︸ ︷︷ ︸

Teacher-provided gradient signal

]

Relying on teacher-provided gradients early can

circumvent risks associated with learning from a poorly

initialized or potentially over-estimated value

function.

These gradients can be interpreted as the directions in

which the agent should adjust their actions to enhance

their current policy.

(a) All Environments, Number of Cycles = 4

Figure 5. Baseline using BC-policy regularizer vs. Filtered

DAgger vs. Expert Gradient auxiliary loss with

decay rate = 1, and decay rate = 5.

Reincarnating Reinforcement LearningWorkshop at ICLR 2023, Kigali patrickemedom@g.harvard.edu

patrickemedom@g.harvard.edu

