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Overview

Hidden Markov Models (HMMs) are a flexible class of models for univariate and multivariate time
series

They assume that the distribution that generates an observation depends on the state of an
underlying and unobserved Markov process

▶ e.g. Psychological studies where we expect our responses to change due some underlying
cognitive state that may unfold over time

Allow us to conduct inference on unobservable state process

HMMs are essentially suitable for settings where the observed data exhibits serial dependence

▶ Other areas of applications include: ecology (e.g. animal behavior), environmental science
(e.g. natural disasters and weather), financial data, and speech
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Overview

A HMM is a dependent mixture model comprised of two stochastic processes:

Unobserved (or hidden) parameter process, {Zt}nt=1, that follows a Markov chain, where
Zt ∈ {1, 2, . . . ,K}

▶ Def. (Z1, . . . , Zn) is a Markov Chain if Zt+1 (Z1, . . . , Zt−1) |Zt

▶ In words: ”The future is conditionally independent of the past given the present.”

A state-dependent process, {Yt}nt=1, where the distribution of our observed values depends only
on the current state of underlying parameter process

Note: t ∈ {1, . . . , n} is an evenly-spaced, discrete unit of time
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Overview

In other words, a HMM is a distribution, p (y1, . . . , yn, z1, . . . , zn) that respects the following directed
graph:

Hence, this reduces to following

p (y1, . . . , yn, z1, . . . , zn) = p (z1) p (y1 | z1)
n∏

t=2

p (zt | zt−1) p (yt | zt)
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Modeling the joint distribution p(y1, . . . , yn, z1, . . . , zn)

Initial Distribution:

πk = p (Z1 = k) and
∑

k πk = 1

π is a vector that represents the initial distribution of Z1

Transition Probabilities:

Tkj = p (Zt = j | Zt−1 = k) where k, j = 1, . . . ,K

Thus, we have a K ×K transition matrix T in where the (k,j)-th entry is Tkj∑
k Tkj = 1 - each row of our transition matrix must sum to 1.

Emission Distributions:

εk (Yt) = p (yt | Zt = k, ϕk)

This is the distribution of our observed outcome. In general, this distribution may be either
discrete (e.g. binomial, Poisson, multinomial), continuous (e.g. normal, Gamma), or multivariate
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Example of a 2-State HMM

Suppose we have the following:

Number of hidden states: K = 2. Hence, we have Zt ∈ {1, 2}

Initial distribution:
π = (0.5, 0.5)

Transition Matrix:

T =

[
.7 .3
.2 .8

]
Emission Distribution:

Yt | Zt = k ∼ N
(
µk, σ

2
k

)
where µ = (−1, 1) and σ = (1, 1)
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Parameter Estimation via Maximum Likelihood

Suppose we observe a dataset Y = {Y1, . . . , Yn}

Our goal is to learn the HMM model parameters θ = {π, T,ϕ} via maximum likelihood

Let Z = {Z1, . . . , Zn} be the sequence of hidden states, where K is chosen a priori

The observed data likelihood function L(θ|Y ) is obtained from the joint distribution p(Y ,Z|θ) by
marginalizing over all possible sequences the hidden states:

L(θ|Y ) = p(Y |θ) =
∑

Z
p(Y ,Z|θ) (1)

=
∑

Z
p(Z1|π)

n∏
t=2

p(Zt|Zt−1,T )

n∏
t=1

p(yt|Zt,ϕ) (2)

=
∑

Z

K∏
k=1

π
[Z1=k]
k

n∏
t=2

[
K∏

k=1

K∏
j=1

T
[Zt=j,Zt−1=k]
kj

]
n∏

t=1

[
K∏

k=1

p(yt|Zt = k, ϕk)

]
(3)
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Maximum Likelihood via EM Algorithm

In general, direct maximization of L(θ|Y ) is difficult

Involves summing over Kn sequences of hidden states (i.e. impractical for long sequences)

Expectation-Maximization (EM) algorithm is commonly used to efficient maximize the likelihood
function in HMM

E-step - Compute the posterior distribution of the latent states, p(Z|Y , θold) , and evaluate the
expected complete data log-likelihood:

Q(θ, θold) = E[ log p(Y ,Z|θ) |Y , θold ] =
∑

Z
p(Z|Y , θold) log p(Y ,Z|θ)

M-step - Maximize Q(θ, θold) with respect to θ = {π, T,ϕ}

Note: the E-step requires evaluating p(Zt|Y , θold) and p(Zt−1, Zt|Y , θold), which can be efficiently
computed using the forward-backward algorithm
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What Now?

Important tasks that rely on θ̂ = {π̂, T̂ , ϕ̂}:
1 Decode the latent states via the Viterbi Algorthm

▶ Z ∈ argmaxZ P (Z|Y , θ̂)

2 Compute the likelihood of HMMs via Forward Algorithm

▶ Necessary for model selection via AIC and BIC (i.e. choosing the number of states)

3 Perform inference on the transition and emission model
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Huang et al. (2018)
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Considerations for Digital Phenotyping Data

Patient heterogeneity

Large (potentially high dimensional) feature space

Irregular observation times

Latent state space representation

Computational efficiency
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Accounting for Patient Heterogeneity

We assume that the observed data Yi produced by each subject i ∈ {1, . . . , N} are independent, each
with its own underlying sequence of hidden states

This stems from the assumption that (1) each subject may transition between states according to
their own internal process and (2) given a state, each subject’s state dependent distribution may
be different

Hence, parameters of the HMM should vary across subjects (i.e. θi is now subject specific)

Hence, variability between the N subjects can be explained by

1 Covariate information

2 Inclusion of random effects
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Covariate Information

Covariates can be included in either that transition probability matrix or in the state-dependent
(emission) distributions to account for some variability

Transition Probabilities: Let Wkj ∈ Rp be a parameter vector and Ci ∈ Rp are baseline covariates for
subject i. We can model the transition probability matrix using a multinomial logistic function

Tkj,i(W ) = p (Zit = j | Zi,t−1 = k,Ci) =
exp(τkj +WkjCi)∑K

h=1 exp(τkh +WkhCi)

Note that the condition
∑

k Tkj,i = 1 must not be violated. We must be careful not to
overparameterize Ti

Note that time varying covariates Cit can be included to produce a non-homogeneous HMM
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Covariate information

Emission Distributions: Let Xi ∈ Rd be a subject-specific (or time-varying Xit) covariates and
βk ∈ Rd be state-dependent covariates

εk (Yit) = p (yit | Zit = k,Xi, βk)

e.g. Let Yit | Zit = k,Xi ∼ N
(
fk(Xi), σ

2
k

)
, where the conditional mean is some parametric

function of the covariates

▶ e.g. fk(Xi) = Xiβk

Estimation & Inference procedures under the inclusion of covariates in either the t.p.m or the
emission distribution is nearly identical to traditional HMMs

Modified EM algorithm that operates over N subjects

Viterbi algorithm simply operates on each patient specific HMM, Zi ∈ argmaxZi
P (Zi|Yi, θ̂i)
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Random Effects

Random effects are parameters (generated from a random model) that allow the estimated effects of
specific covariates (or the intercept) to vary across subjects

They can also be included in the transition probability matrix or in the emission distribution

Extremely useful in accounting for between-subject and within-subject variability
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Random Effects
Model Structure I: Common t.p.m with random effects on emissions

Let Yit follow a distribution from the exponential family conditional on the random effects, u ∼ f(u|θ),
the hidden states, Z, and our model parameters θ:

f(yit|Zit = k,u, θ) = exp
{ (yitηitk − c(ηitk))

a(ϕ)
+ d(yit, ϕ)

}
where, ηitk = τk + x′

itβk +w′
itku.

The likelihood for the model is specified as follows

L(θ|y) =
∫
u

∑
z

f(y|z,u, θ)f(z|θ)f(u|θ)du

=

∫
u

N∏
i=1

{∑
zi

πzi1f(yi1|zi1,u, θ)
ni∏
t=2

Pzi,t−1,zitf(yit|zit,u, θ)
}
f(u|θ)du,

where {Pkl} is homogeneous transition probability matrix and {πk} is the vector initial probabilities;
both quantities are common for all i.
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Random Effects
Model Structure II: Random effects on t.p.m and emissions

Here the transition probabilities are modeled as

P (Zit = l|Zi,t−1 = k,u, θ) =
exp(τ∗kl + x∗′

itβ
∗
kh +w∗′

itklu)∑k
h=1 exp(τ

∗
kh + x∗′

itβ
∗
kh +w∗′

itkhu)
.

Furthermore, the likelihood under this model is follows as

L(θ|y) =
∫
u

N∏
i=1

{∑
zi

πi,zi1f(yi1|zi1,u, θ)
ni∏
t=2

Pi,zi,t−1,zitf(yit|zit,u, θ)
}
f(u|θ)du,

Estimation & Inference:

Random effects make traditional EM algorithm or direct maximization difficult to perform

Altman proposes using direct maximization while employing both Guassian quadrature and
quasi-Newton methods, or an Monte Carlo expectation-maximization algorithm (Altman 2007)
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High Dimensional Data - Need for Parsimonious Models

When dealing with digital phenotyping data, its common to assume that the feature space of X ∈ Rd is
large or, even, high dimensional

Determining which set of covariates belong either to the transition model or the emission model
may require clinical guidance or an exhaustive search

Variable selection methods for both the transition model and emission model are need

Select relevant features that affect between state-transitions

Select relevant features that fully characterize the true emission model

▶ e.g. introduce feature saliencies (Adams et al. 2016)
⋆ parameters represent the probability that a feature is relevant by distinguishing between

state-dependent and state-independent distributions

▶ e.g. state-dependent variable selections methods (e.g. proximal gradient descent methods,
such as LASSO on M-step of the EM)
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Irregular Observation Times

HMMs assume that data are sampled regularly over discrete intervals. However, this assumptions is
commonly violated in clinical and digital phenotyping studies

Patient data are sampled irregularly over time

▶ e.g. instances of informative missingness (i.e. missed surveys, zero reading when a subject’s
smartphone is turned off)

Harvard University HMMs for Digital Phenotyping Data 22 / 27



23/27

Irregular Observation Times

Continuous-time HMM is an HMM where both the transition model between states and the arrival of
observations can occur over continuous time intervals

Under this model, (1) hidden parameter process is unobserved and (2) the exact between-state
transition times are also unobserved

Rely on a transition rate matrix Q where each sojourn time in each state k is exponentially
distributed

▶ Inference focuses on (1) transition intensities between states and (2) mean sojourn time in
each state

Increased flexibility over discrete time HMMs

▶ helps avoid the need of imputation for missing data
▶ can be computationally costly for large datasets
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Latent state space representation

Given an application, obtaining a discrete representation of states can be difficult

1 Choosing finite number of states may not be intuitive

2 Complex problem space results in a large number of states −→ large parameter space

We can consider a continuous-valued state process, where the states are real-valued

These are formally referred to as State Space Models (SSM) of which HMMs are a special case
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Latent state space representation

Hierarchical HMMs
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Computational Efficiency

Estimating parameters and computing the likelihood of an HMM are computationally expensive
tasks

Typically digital phenotyping studies sample temporally dense (e.g. minutes, hours, days) data
over long time periods (e.g. 6 months, 1 year, etc)

Need for computationally efficient online algorithms that estimate model parameters as new data
{Y,X}newi is observed for each subject i
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Thank you!
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