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Transition from Episodic to Continuous Data Collection
Traditional approaches for evaluating subject behavior in healthcare rely on tools such as surveys or in-clinic
interviews
@ Administered in fixed periods of time, typically after the event or episode of interest has occurred
> Resulting in data collection that is episodic and sparse in nature
@ Attempt to build a chronological ordering of events based on subject recall

@ Build categorizations of patient experience that are heavily contextualized to the specific time and
location of data collection
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Transition from Episodic to Continuous Data Collection

Novel data collection approaches attempt to characterize real-world human behavior in an objective, consistent
manner

@ Focus on identifying social, behavioral, and cognitive phenotypes that are temporally and contextually
dependent

@ Aim to improve reliability of data collected by minimizing reliance on subject recall
@ Leverage devices that have (1) high adherence and (2) use among a study populations (i.e., smartphones)

@ Digital Phenotyping is defined as “moment-by-moment quantification of the individual-level human
phenotype in situ using data from personal digital devices, in particular smartphones.”

Smartphone-based Digital Phenotyping
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Research Overview

Goal of Dissertation: Develop interpretable statistical machine learning methodology that reveal valuable
clinical insight from real-world behavioral data.
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Smartphone Data Collection and Analysis

Beiwe Data Collection: Patients installed the data collection application to their smartphones.
@ Beiwe is a high-throughput raw data collection platform in development and use since 2013
@ Front-end: native Android and iOS applications for collecting active and passive data

@ Back-end: Amazon Web Services (AWS) cloud computing, scalable, globally deployable

Forest data analytics library provides a suite of methods for handling data generated from Beiwe

@ GPS imputation and summarization, activity recognition (e.g., step counting, walking cadence), survey
data aggregation, call/text summarization, etc.

@ Implemented in Python and can be run locally or on the AWS backend

Ybeiwe
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Chapter 1: Nonparametric Additive Value Functions —
Interpretable Reinforcement Learning with an
Application to Surgical Recovery




Postoperative Spine Disease Recovery

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to
Surgical Recovery

Postoperative recovery is defined as the period of functional improvement between the end of surgery to the
onset of normal functional activity:

@ Can vary drastically among patients

@ Accompanied by mild to severe complications

Current Physician-guided Recommendations:

@ Early mobilization activities (e.g., as standing, walking, and getting in and
out bed)
@ Consistent pain management

= M
»[
7 J

Physicians currently lack:
@ A quantification of allowable levels of mobilization (e.g., relative step count,
walking cadence)
@ An understanding of optimal time to initiate mobilization over the course of
the recovery period
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Challenges in Current Clinical Practice

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to

Surgical Recovery

Current measurements for postoperative assessments rely on patient-reported
outcome measures (PROMs)

@ A set of clinically-validated questionnaires that capture patient outcome
@ Administered in person during follow-up visits, or, electronics via surverys
@ PROMs are insufficient for most tasks

Underutilized by physicians due to administration burden
Reliant on patient recall

Sparse coverage over the course of patient follow-up
Response (shift) bias
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Brigham and Women Hospital's Spine Disease Study Cohort

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to
Surgical Recovery

Computational Neuroscience Outcomes Center (CNOC) at Harvard and BWH constructed the first
smartphone-based digital phenotyping spine disease study cohort

@ Study Aim: Quantify real-world patient experience using reliable and objective measures of quality of life
@ n = 344 patients with clinically diagnosed spine disease

@ Median age of 57 (IQR: 49-68)

@ Enrollment period between June 2016 and March 2020, with 6-months of follow-up

@ 58.6% of patient received a neurosurgical intervention
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Digital Phenotyping Summary Statistics

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to

Surgical Recovery

Mobility-based Summary Statistics:

[ Distance Traveled (km) Radius of Gyration (km) Average flight duration (km) ||
|| Time Spent at Home (hours) Maximum Diameter (km) Fraction of the day spent stationary ||
H Max. Distance from Home (km)  Num. Significant Places Visited Time Spent Walking H
|| Average flight length (km) Step Count Average Cadence [

Table: Subset of GPS and accelerometer-based summary statistics of digital phenotyping.

Active Data Collection (via micro-surveys):

@ Active: 0-10 Self Reported Pain level
» Prompt: “Please rate your pain over the last 24 hours on a scale from 0 to 10, where 0 is no pain at
all and 10 is the worst pain imaginable”
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Evaluating Postoperative Mobility and Recovery

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to

Surgical Recovery
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Figure: Smoothed mobility proportions (with standard errors represented in grey) for spine disease cohort centered on day of surgery.
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Figure: Pre- and post-operative pain responses with time centered on the day of surgery (i.e., blue line) with a fitted local regression (i.e.,
black line) for a random selection of patients.
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Research Problem & Objective

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to
Surgical Recovery

@ Problem: How can we improve post-operative rehabilitation for surgical patients?

@ Goal: Can we learn a decision-making policy concerning the daily post-operative steps a patient should
take in order to improve their recovery process given their current condition?

@ Objective: To estimate interpretable recovery strategies for post-operative surgical patients using offline
digital phenotyping data
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Re-framing as a Reinforcement Learning Problem

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to

Surgical Recovery

state| [reward action
S| (R A

Rm
S.. | Environment

Policy: is a any function 7 : S — A mapping states to actions

Q-value Function: provides a mapping from a state-action pair, (s,a), to the expected total discounted future
rewards

Q" (s,a) =E

oo
¢
Z’y r(se,ae) | so =s,a0 = a:|

t=0
when following a given policy 7. Note that v € [0,1)
Goal is to find optimal policy, 7*(s) = arg max Q™ (s,a’)
a€EA  N———
learn via function
approximation
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Need for Interpretable Function Approximators

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to

Surgical Recovery

state
s,

reward

R
Ry
s.. | Environment

action
A

Current state-of-the-art algorithms approximate Q7 (s, a) use black-box methods, e.g., neural networks

@ Incorporate fitted Q-iteration with modern tools (e.g., replay buffers, target networks)

@ Solve complex, high-dimensional decision-making tasks (e.g., Go, chess)

Unfortunately, the success of these modern RL algorithms comes at the cost of model interpretability

@ Unable to examine the contribution each feature makes in producing the model’s final suggested action

@ Unsuitable in high-risk domains such as health care — hope to anticipate the models performance
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Nonparametric Additive Value Functions
Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to

Surgical Recovery
We present a generalized nonparametric, additive

framework for modeling Q™:

d
Q"(s,a,2) = ga() + Y fialss,z) +e

j=1

@ Expand the input space of Q™ to include the
variable € R (e.g., a candidate state feature, a

confounder, or an action)
@ go(-) represents the additive marginal effect of x under action a

® fj.a(:,-) represents the additive joint effect of interactions between = and state features s; under action a

Our model structure allows us to examine additive nonlinear relationships that may exist among relevant state

features, actions and the variable z
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Estimation Strategy for g,(x) and f;.(s;, x)

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to
Surgical Recovery

Step 1 — Basis Expansion: For an arbitrary fixed
constant z, we locally express our model using a
centered B-spline basis expansion:

d m
Q7 (s,a,r = 2) = Qa,z + Z Z wje(s5)Bita,z

j=1¢=1

@ «q,. is a constant representing the marginal
effect go(+) at the fixed value z
@ Each additive component function f; o is represented as a centered B-Spline basis function

fra(s5,2) =Y @5e(s)Bitsaz

=1

where @;¢(s) = ¢i(s) — E[t¢(s;)] for the j-th component function and the ¢-th basis component
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Estimation Strategy for g,(x) and f;.(s;, z)

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to
Surgical Recovery

Step 2 — Kernel (or Locally) Weighted Least Squares Fixed Point Approximation: Finding a good

approximation of Q™ equates to forcing the approximate value function to be a fixed point under the Bellman
operator T:

@ Classical Estimation of Q™ via LSTDQ (Lagoudakis and Parr 2004): Qp, ~ II7:Qgs,
o Kernel Weighted Approach: Qs, ~ Ilw. 7-Qs, (with a group Lasso penalty)

o . . .

Step a. Construct kernel-weight matrix Step b. Perform kernel-weighted least squares
: i i fixed point approximation T-Qp.

W, = diag(Kp (2! — 2) - K (a1 — 2)) e RV*V

R* w T-Qp,

N7.Qp

................................................................
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Simulation Study

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to
Surgical Recovery

Using the simulated MDP, we examine our

5 50 50 X
algorithm’s performance in estimating the marginal 2 PSS ,/Aj\ V\\/ \\
nonlinear additive function g, (z) g0 0 g
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additive model -100 N ) N .
-2 0 2 -2 0 2
S S
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jeld]/i (a) Marginal effect G, (s1) vs. Monte-Carlo estimate of Uy (s1, a).
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Harvard University Dissertation Defense May 1, 2023 18 / 64



Application to Surgical Recovery

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to
Surgical Recovery

Objective: Estimate a decision-making policy that suggests the daily number of steps necessary to reduce
long-term (v = 0.5) post-operative pain response.
@ Problem Setup: We construct a simple MDP where each time step ¢ corresponds to a day since surgery

@ State vector s € R represents d = 9 relevant digital phenotyping features and patient-specific
clinical information

O Actions a® € {0, 1} are binarized, where 0 corresponds to moving less than the patient-specific
pre-operative median number of steps taken per day and 1 represents moving above this threshold

@ Rewards r™ = negative self-reported pain score

@ We implement a set of nonparametric additive models to estimate action-value functions associated with

@ A behavioral policy 7, that aims to mimic decisions commonly taken by subjects, and

@ An improved policy 7 retrieved from performing approximate policy iteration on the estimated
behavioral policy.
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Sample Characteristics

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to

Surgical Recovery

Variable

n (%) or Median (25th—
75th)

We consider the first 60 days of recovery of n = 67
spine patients

@ Patients follow-up period of less than 5 days were
excluded

@ A batch dataset D = {(s?, ),r(i),s/(i))}fvzl
with N = 1,409 daily tranS|t|ons was constructed

@ A nonparametric additive model was estimated
for each candidate variable of interest:

> x = age, number of days since surgery

Demographic Data

Age 57.0 (48.0-65.5)
Female gender 34 (50.7)

Site of surgery
Cervical 19 (28.4)
Lumbar 27 (40.3)
Thoracic 2 (3.0)
Multiple 18 (26.9)

Data Collection
GPS days of follow-up 61 (49-61)
Accelerometer days of follow-up 61 (50.5-61)

Daily pain survey response rate

50.4 (42.4-76.9)

Digital Phenotypes
Number of places visited
Time spent at home (hours)
Distance traveled (km)
Maximum distance from home (km)
Radius of gyration (km)
Time spent not moving
Average cadence
Number of steps

3(2-5)

18.3 (12.9-21.9)
32.3 (10.8-62.3)
10.6 (4.5-25.5)
1.50 (0.18-5.01)
21.2 (20.2-22.2)
1.64 (1.55-1.74)
948.6 (356.9-2,005)
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Marginal Effects g,(z)

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to
Surgical Recovery
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Figure: A comparison of the marginal component function ga(z) of Q7 (s, a, x) estimated under the behavioral policy
m = mp vs. the improved policy m = 7*.
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Differential Joint Effects f;(s;, z) — fio(sj, )

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to
Surgical Recovery
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Figure: The differential benefit of selecting action a = 1 over a = 0 with respect to joint effects fj,a(sj, x) under
Q™ (s, a,z) estimated for the behavioral policy m = 7, vs. the improved policy m = 7*.
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Conclusion

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to
Surgical Recovery

@ We introduce a flexible and interpretable representation for modeling action-value functions

@ Our representation allows for the estimation of non-linear marginal effect of select variables and joint
effects between state features

@ Our modeling approach can also accommodate continuous actions (i.e., z = a)

@ In our application to surgical recovery, we reveal recovery strategies that are in-line with current clinical
practice
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Chapter 2 - Knowledge Transfer from Teachers to Learners in
Growing-Batch Reinforcement Learning
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Motivation

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

In most real-world applications of RL,

@ Continual improvement of decision-making
policies during environmental interaction is
infeasible due to resource/safety constraints

@ Policies are learned in an offline or a
growing-batch manner

@ Learning optimal policies is difficult due to
limited opportunities for online self-corrections
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Motivation

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

In many domains, well-informed /task-specific
knowledge exists and can be queried

@ An external teacher can help alleviate some of
these issues, providing external corrective
feedback

@ Teachers can be represented as human, RL
agent, or program

@ Expert knowledge by the teacher can be provided

@ Up-front via demonstrations, or

@ Throughout the life-cycle of the student
agent via annotations

How can we leverage teachers to improve the sample efficiency and performance of value-based RL
agents learned in the growing-batch setting?
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Growing-batch Reinforcement Learning

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

Uy L 2} Wy 4 Uy Un_1
Yo ——  Cyeletl [— Cycde2 f(——+++—— Cydek [—++—— Cyclend [—— Cyden —— A\ 2N

Policy improvements via offline parameter updates are made only after new batches of experiential data are
gathered from the environment.

@ In practice, the number of cycles tend to be small, while the size of each newly gathered batch is
large
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Experimental Setup - Actor Critic Agents

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

For our experiments, we primarily utilize D4PG agents to accommodate continuous actions, where we
@ Learn a critic Q4 (s, a) via distributional TD-Learning, where Q4(s,a) = EZ4(s,a) and Zy(s,a) is
estimated by minimizing the distributional TD error

L(¢) = Eampr [d (Trg Zor (5, 0), Zs(5,a)) ]

@ Learn a parametric policy mg using the deterministic policy gradient (DPG)

Vo (6) = By [ Vomo()VaQu(s, ) ury o)

where 7(8) = E(s.a)~p [Q™ (s, a)] is the expected return.
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Experimental Setup - DeepMind Control Suite

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

(a) Cart-pole: Balance b) Finger-Spin ) Cheetah-Run (d) Pendulum (e) Walker-Run
& Swing-up Swing-up

Figure: The DeepMind Control Suite environments used in our experiments.

Growing-Batch and Environment Settings:
@ Evaluated experiments on six control suite environments

@ Fixed the total number of actor steps to 2M, which is the value needed to solve the task by an online
agent
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Pre-training Agents using Demonstrations

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

In our first set of experiments, we examine the performance of naively pre-training a policy using
demonstrations from a teacher performing the task

@ Pre-loaded replay buffer with 1M transitions

from 1K episodes

@ Pretrained the student’s policy mg, using

behavioral cloning

@ Using the BC policy, the critic is pre-trained

using D4PG policy evaluation
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Pitfalls

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning
Naively pretraining 7o using behavioral cloning performs poorly

@ Dramatic drop in performance when training with newly generated data within the first cycle
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(a) Cartpole Balance, Number of Cycles = 4
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BC-Policy Regularization

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

To prevent “forgetting” the initialized policy, we explored incorporating a regularization term on the DPG
objective function:

T(00) = Joswa(0c) + Eanpr [Imac(s) = mo, (3)]3]

BC regularizer

where we explicitly keep our learned policy close to the BC-initialized policy.
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Results - BC-Policy Regularization

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning
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(a) All Environments, Number of Cycles = 4 (b) All Environments, Number of cycles = 8

Figure: Baseline with BC initialization only vs. BC-policy regularizer
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BC-Policy Regularization (Blissful Ignorance)

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

Assuming that the BC-initialized policy is sub-optimal, 10
we would like the agent to surpass it’s performance:

@ Incorporated an exponential decay weight
a € (0,1) as a hyper-parameter 08

J(0k) = (1 — ) Jpapc(0r)

2
+ @ Eurr [ mac(s) = 7o, (5)]1]
BC regularizer 00
. . 0o 02 04 0% 08 10
@ By treating « as a function of total learner Praportion of Leamer Steps Take

steps,

. L . Figure: Exponential decay weight o for various rates.
© We first stay close to the initialized policy

© Then, gradually prioritize solely learning
from the DPG loss component
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BC-Policy Regularization (Blissful Ignorance)
Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

1k =

return

Assuming that the BC-initialized policy is sub-optimal,

. .y e e B L LTI rrrrrrre e
we would like the agent to surpass it’s performance: p
800 @
@ Incorporated an exponential decay weight 700-§ T
600 —

a € (0,1) as a hyper-parameter
500 MW

J(0x) = (1 — ) Jpapc(0r) m;ﬂ

2 200
+ & Eanpr | lImec(s) = 7o, (5)13]
evalllearner_cycles
BC regularizer 0 T T T T T T T T T 1
€ P S ) B v
@ By treating « as a function of total learner (a) All Environments, Number of cycles = 4

steps,

@ We first stay close to the initialized policy Figure: Baseline with BC initialization only vs. BC-policy

regularizer
© Then, gradually prioritize solely learning with decay rate = 1 and decay rate = 5.
from the DPG loss component
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Teacher Guided Annotations

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

While BC provides an initialization to a good policy, our agent still risks learning a sub-optimal policy due to the

following issues related to (1) insufficient state-action coverage and (2) overestimation bias:

@ We considered various forms of annotations provided by a teacher at training time

@ We explore using teacher-suggested actions as a mechanism for mimicking the teacher
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Teacher-Suggested Actions - Varying Decay Rates

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

We query the teacher's action a* ~ 7" (s) during

training time:

@ We incorporate an ¢ loss component that
evaluates the difference between the student’s
policy and the teacher-suggested action

@ Additionally, we incorporate a between-cycle
regularizer to promote monotonic improvement

between cycles

J(0r) =(1 — &) Jpapc(0r)

+ B Eampr [0,y () = mo, (5) 3]

Between-cycle policy regularizer

+ 0 Eupr [fla” =m0, ()]]

Teacher-action Component

> The weight 8 € (0, 1) decays with respect to cycle k
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Filtered Teacher-Suggested Actions

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

. . . T E
We explore using a Q-filter to determine which loss 2
. 900 - G o oo ARSI
component (Teacher-action vs. D4PG) to learn 3
. . 800 —|
from for a given transition: g
7004 €
H
600 —|
VT (61) =Esmpr [ [1 = 8()] Vom0, VoQo (5.0 o_r, (1) o]
D4PG component 400 Y s
300
* 2 /
+ 3(5) Vo lla” = mo, (3)11 |.
Teacher-action component 100 evalllearner_cycles
AN R S A A R

(a) All Environments, Number of Cycles = 4

where 6(s) = 1 [ngk (s,a™) > Qg (SaWG(S))} is a

Q-filter. Figure: Baseline using BC-policy regularizer vs. Filtered
L. i i Teacher-action vs.
@ Ignore (or de-prioritize) learning from actions that Teacher-action auxiliary loss with decay rate = 1, and
produce lower values than using g, (s) decay rate = 5.
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Leveraging Sub-optimal Teachers

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

Information from sub-optimal teachers can be used to “jump-start” new policies:

@
o
o
1
eval/episode_return

eval/learner_cycles

0
NN A A X

(a) All Environments, Number of Cycles = 4

Figure: Baseline using BC-policy regularizer vs. Filtered Teacher-Actions vs. Teacher-Gradient auxiliary loss with
decay rate = 1, and decay rate = 5.
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Alternative Annotations - Teacher Gradients

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning

At a first glance of the deterministic policy gradient, one approach is to replace VaQg(s,a)|a=ry(s), With the
gradient of the teacher’s Q-function w.r.t to the students policy:
a:‘rrg(s):|

In practice, this can be achieved by modifying the DDPG policy loss as follows:

rteacher

VoJ (m9) = Esmpr | Voma(s)VaQ (s,a)

teacher

J(0r) = (1 — a) Joapc(0) + a [V.Q"  (s,a) +a—me, (s)|l2+ Esmpr [HWBC(S) — T, (S)|I§]

Expert Gradient DPG Component

BC regularizer

@ Intuition: This loss encourages the agent to learn a policy that selects actions in the direction that
maximizes the teacher's critic.
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Results - Teacher Gradients

Chapter 2 - Knowledge Transfer from Teachers to Learners in Growing-Batch Reinforcement Learning
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(a) All Environments, Number of Cycles = 4

Figure: Baseline using BC-policy regularizer vs. Filtered DAgger vs.
Expert Gradient auxiliary loss with decay rate = 1, and decay rate = 5.
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Conclusion

© Initially staying close to the BC policy completely avoids the previous drop in performance, but can dampen
overall performance if “forgotten” slowly.

@ Learning directly from the teacher’s action provides a substantial performance boost, but is sensitive to
the choice rate parameter for a.

© While the Q-filter initially under-performs, it adaptively reaches superior performance without use of
hyper-parameter tuning.
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Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use
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Motivation

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder

Bipolar disorder is associated with significant morbidity and mortality

@ 2-3 fold increased risk for pre-mature mortality (e.g., cardiovascular disease, diabetes, COPD,
unintentional injuries, suicide)

@ NIMH estimates BP is prevalent among 2.6% of US adults and 2.9% of adolescents (Ages 13-18)
@ Recurrent mood episodes are common (i.e., emotional highs or lows)

» Risk of future episodes increases with each occurrence
» The number of episodes are associated with poor outcomes

» Symptoms typically emerge prior to the onset of an episode

@ Meta-analysis (2016) revealed that energy changes, increased activity, sleep problems, and physical
agitation are common prior to BP episodes
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Motivation

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder

Study Goal: Use digital phenotyping to develop features that can help identify the onset of notable mood
episodes

Current Objective: Decode resting and active patterns of smartphone use that correlate with sleep
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Study Cohort

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder

n (%) or Median

Variable (25t 75th)
We study a subset of participants enrolled at NYU Langone Demographic Data
A 16 (15-
Health & Northwell Health o @
. Female 23 (53.5%)
@ n = 43 adolescents (median age of 16): Male 18 (41.9%)
Other 2 (4.6%)
> 20 participants had a diagnosis of bipolar Diagnosis
. : H Bipolar 22 (51.2%)
disorder and are risk of developing a new mood e ly-developing 2 (a5 3
episode Race
> 23 participants were selected as healthy controls Asian 2(5)
Asian, Black or African American 2 (5%)
. H H Asian, Black or African American, White 1(2%)
@ Each participant installed the Beiwe research platform Amrica i o Ao Nate, A ;Ezfg
H ack or African American 7Y
on their smartphones Black or African American, White 2 (5'%:)
. . South Asian 3 (7%)
@ Examined up to 1-year of data collected starting White 29 (67%)

from January 1, 2021

Data Collection

Phone usage days of follow-up
Number of surveys recorded

223 (116-322)
08 (53-148)
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Smartphone Data Collection

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder

Data analyzed were primarily collected from smartphone usage logs

@ We focused on events that indicate moments of smartphone interactivity:

» i0S devices: the smartphone being “Unlocked”
> Android devices: the smartphone’s screen being “turned on”

@ Data were recorded as the event occurred in real-time

@ Events were binned into five-minute intervals starting from the onset of the day of first data collection for
patient ¢ (i.e., 00:00:00 - 00:05:00)

@ Periods within a day where no usage events were recorded received an entry of 0
@ Entire days where no usage events were recorded
@ We denote the number of events that occurred with the interval ¢ as Y; € [0, 00)

@ Across all patients, we collected 2.63M observations
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Hidden Semi-Markov Models

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder

Latent States > >
(Unobserved) Markov Chain
Observations @ e e @ e @

Latent State Durations d ds dx

Figure: Representation of a Hidden-Semi Markov Model with state durations d;
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Decoding Viterbi Paths

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder

1D 39 (Typically-developing, Age = 16) States [ 1 M 2

Hour of day [EST Time]
o g &

& R

s o

8 8

2
)
3

& 4 « S
Date

%,

(a) Viterbi path of Participant ID 39 (typically-developing, age 16).

ID 7 (Bipolar, Age = 16) States [ 1 M 2

Hour of day [EST Time]
g e &
& B o
5 o o
§ 8 8

o

Date

(b) Viterbi path of Participant ID 7 (bipolar, age 16).

Dissertation Defense



Decoding Viterbi Paths — Day of the Week Effects

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder

ID 37 (Typically-developing, Age = 14) tates M 1 M 2

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

T
E 20:00
1 16:00
21200
g
3 08:00
3 04:00
T

00:00

SR @@éyﬁw“ﬁy \;9\@ S v‘k@ SR v‘?@ PSS w&s”* SIS @@”‘s\%‘b“ & vﬁ\@ S
Date

(a) Viterbi path of Participant ID 37 (typically-developing, age 14) stratified by day
of the week.

ID 33 (Bipolar, Age = 15)

Monday Tuesday ‘Wednesday Thursday Friday Saturday Sunday

E 20:00
1 16:00
> 12:00
g
5 0800
3 04:00
T

0000

§3§\§ 3®3§\§3\§3§?§3&°\§3&
Date

(b) Viterbi path of Participant ID 33 (bipolar, age 15) stratified by day of the week.
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Latent Regression Analysis

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder

Using the decoded states, we performed a regression analysis using a linear mixed effects models:

@ Model A: To identify temporally-dependent trends between time of day and phone use under the resting
and active states

O Model B: To identify a differential state duration between bipolar participants and healthy controls

In both model, we adjust for the same set of potential confounders: age, sex, race, and day of the week.

Harvard University Dissertation Defense May 1, 2023 51/ 64



Model A — Temporally-dependent Phone Use

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder

Model A: To identify temporally-dependent trends between time of day and phone use under the resting and
active states

@ We fit the following linear mixed effects model:
YilZvi =7~ p+ f(Xu) + Z5a+ i + €4, J € {resting, active}

where 1 is the intercept, X4; is our variable of interest, Z;; is a set of potential confounders, and ~; is a
subject-specific random intercept

@ We condition the response variable Yi; on j, the value of the decoded latent state

@ Xy; € [0,24) represents time in hours

@ f is a B-spline function with knots at 6, 12, and 18
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Model A — Temporally-dependent Phone Use, f(X;)

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder
0] (ii)

08 08
06 06
04 04
02 02
00 00
[ 5

(a) Temporally-dependent smartphone use for typically-developing adolescents

(i)

(i)
08 08
06 06
04 04
02 02
0o T————————————————————————— 00
[ 5

(b) Temporally-dependent smartphone use for bipolar adolescents
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Latent Regression Analysis

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder
Model B: To identify a differential state duration between bipolar participants and the health controls

@ We fit the following linear mixed effects model:
dii| Zei = j ~ p+ f(Xti) + Lo+ i + e, j € {resting, active}

where 1 is the intercept, X¢; is our variable of interest, Z;; is a set of potential confounders, and ~; is a
subject-specific random intercept

@ We condition the response variable dy; on j, the value o f the decoded latent state

@ dy; is the estimated state duration on day t under participant i and state j

@ f(Xt) =B - X+, where X4 is an indicator function for Bipolar status
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Latent Regression Analysis

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder
Model B: To identify a differential state duration between bipolar participants and the health controls

@ We fit the following linear mixed effects model:
dii| Zei = j ~ p+ f(Xti) + Lo+ i + e, j € {resting, active}
where 1 is the intercept, X¢; is our variable of interest, Z;; is a set of potential confounders, and ~; is a
subject-specific random intercept
@ We condition the response variable dy; on j, the value o f the decoded latent state
@ dy; is the estimated state duration on day t under participant i and state j

@ f(Xt) =B - X+, where X4 is an indicator function for Bipolar status

Results:
|| Latent State | 3 | p-value | 95%-Cl [
|| 1 (Resting) | 71.03 | 0.002 | [27.64,114.43] ||
|| 2 (Active) | -69.83 | 0.005 | [—116.34,-23.34] ||
Table: [ estimated from LMM controlling for age, sex, race, and day of the week.
Wiay 1, 5023
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Conclusion

Chapter 3 - Decoding Resting and Active Patterns of Smartphone Use in Adolescents with Bipolar Disorder

@ Decoded states provide a “first-order” approximation of sleep
@ Several natural extensions:

> Incorporate additional modalities (e.g., accelerometer/distance-metrics, screen-time) to model our
observations

» Consider heterogeneous dwell-times using covariates and/or random effects
» Consider hierarchical hidden semi-Markov models
@ Future: Build interventions using reinforcement learning

> Latent states provide us with a direct and interpretable mechanism for representing observations
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Chapter 4 - Assessing Mobility in Glioblastoma Patients using Digital
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Background

Chapter 4 - Assessing Mobility in Glioblastoma Patients using Digital Phenotyping — Piloting the Digital Assessment in
Neuro-Oncology

Glioblastoma (GBM) is a rare, fast-growing, and aggressive brain tumor
@ Survival is poor — 5-year survival rate < 5%

@ Clinical trials evaluating new treatments for GBM rely on metrics that ignore the debilitating functional
and symptomatic impact of GBM and its associated treatment on patients

@ Data on patient functioning and quality of life in the glioblastoma (GBM) population in free living settings
are limited

» Infrequent and sparse collection of patient-reported outcomes

@ Digital phenotyping provides a means to monitor patient treatment response and recovery in an objective,
consistent manner, with minimal patient burden

Objective: Conduct a Digital Assessment in Neuro-Oncology (DANO) pilot by identifying key trends in
post-operative recovery among GBM patients
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Study Cohort

Chapter 4 - Assessing Mobility in Glioblastoma Patients using Digital Phenotyping — Piloting the Digital Assessment in
Neuro-Oncology

Strata Primary GBM msfs= Transformed or Recurrent GBM
Our study cohort consisted of 15 GBM patients (mean 1004
age 56.5;46% female)
@ 12 were primary GBM (no history of previous 5,075
low-grade tumor) z
=
@ 3 were recurrent/transformed (i.e., low grade £ 050+ +
glioma transformed in higher grade) g
5
@ Each received surgical resection of the tumor © 025+
@ A control group of 30 non-operative spine
patients with no history of brain cancer 0.001 | | |
0 100 200 300
> (Mean age 54.2; 33.3% female) Days since enrollment

Figure: Kaplan-Meier survival curve from the start of
patient enrollment to end of follow-up.
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Smartphone Data Collection

Chapter 4 - Assessing Mobility in Glioblastoma Patients using Digital Phenotyping — Piloting the Digital Assessment in
Neuro-Oncology

Mobility-based Summary Statistics:

|| Distance Traveled (km) Radius of Gyration (km) Num. Significant Places Visited ||

H Time Spent at Home (hours) Max. Distance from Home (km) —_ H

Table: Subset of GPS-based summary statistics of digital phenotyping.

Sample size

0 30 60 90 120 150 180
Days since surgery

Figure: Sample size as a function of days since surgery. Number of patient-level GPS data available as a function of day
since surgery. Average 108.9 days of GPS data per patient (range of 20 to 181).
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Evaluating Changes in Mobility — Location-based Summary Statistics

Chapter 4 - Assessing Mobility in Glioblastoma Patients using Digital Phenotyping — Piloting the

Neuro-Oncology

Harvard University

Time spent at home (hours)

Number of significant places visited

)

“Time spent at home (hours)

Number of significant places visied
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Evaluating Changes in Mobility — Distance-based Summary Statistics

Chapter 4 - Assessing Mobility in Glioblastoma Patients using Digital Phenotyping — Piloting the Digital Assessment in
Neuro-Oncology
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Individual-level Changes in Mobility During Active Treatment

Chapter 4 - Assessing Mobility in Glioblastoma Patients using Digital Phenotyping — Piloting the Digital Assessment in
Neuro-Oncology

TMZ = Temozolomide

T
z o |
g® h o1
o L 1
E T~ -T2 T RS [} m- - -ar T T T T
< | 1 [ [ 1
] ' 1 [ [ [
g 10 1 1 [ [ [
2 i 1 ] ] 1
o ' 1 || [ ]
£ 1 1 [ [ i
F 1 1 [ [} [
0 ' 1 L L 1
o 50 100 150
Days since enroliment
[ 1
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Conclusion

Chapter 4 - Assessing Mobility in Glioblastoma Patients using Digital Phenotyping — Piloting the Digital Assessment in
Neuro-Oncology

@ Digital phenotyping has the potential to allow for quantification of patient behavior and recovery
without the need for active patient involvement

@ In general, GBM patients appear to be less mobile than the control group
> With largest dip in mobility occurring immediately after surgery
@ Individual-level analysis revealed noticeable dips in mobility immediately following treatment

> Potentially attributable to accumulating symptom burden

@ Future — Determine whether inferences made using mobility-based assessments coincide with
patient-reported outcomes
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Appendix: Simulation Study

Chapter 1: Nonparametric Additive Value Functions — Interpretable Reinforcement Learning with an Application to
Surgical Recovery
We examine our algorithm’s performance in estimating the marginal nonlinear additive function g, ()

@ We construct a simulated MDP:
Q Initial state vector s(¥) € R? with each element sampled as s'” € Unif(%, 1)

© Next state transition occurs as s ~ /\/’(s(ffl) + 64,0.1), where
60 =0.1%x1(a® =0)—0.1 x 1(a® =1)

@ Additive reward function defined as r(s,a) = u1(s1,a) + uz2(s2, a)

@ Perform Monte-Carlo simulation to estimate the action-value function associated with the random policy
mi(s(t)) € {0,1} with p = 0.5 and a discount factor of v = 0.5

oo
Q" (s.a) = Ex, [Z 7r(s,a?) | s = 5,0 = ]
1=0

2 o)
Z Ere |:Z ’yiuj (Sy)7 a(i)) | S(O) =5, a(O) = a:|

j=1 i=0

Ui(s1,a) + Uz(sz, a).
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