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‘We propose a nonparametric additive model for estimating interpretable
value functions in reinforcement learning, with an application in optimiz-
ing postoperative recovery through personalized, adaptive recommendations.
While reinforcement learning has achieved significant success in various do-
mains, recent methods often rely on black-box approaches, such as neural
networks, which hinder the examination of individual feature contributions
to a decision-making policy. Our novel method offers a flexible technique for
estimating action-value functions without explicit parametric assumptions,
overcoming the limitations of the linearity assumption of classical algorithms.
By incorporating local kernel regression and basis expansion, we obtain a
sparse, additive representation of the action-value function, enabling local
approximation and retrieval of nonlinear, independent contributions of select
state features and the interactions between joint feature pairs. We validate
our approach through a simulation study and apply it to spine disease re-
covery, uncovering recommendations aligned with clinical knowledge. This
method bridges the gap between flexible machine learning techniques and the
interpretability required in healthcare applications, paving the way for more
personalized interventions.

1. Introduction. Optimizing postoperative recovery is crucial for improving surgical
outcomes, including functional restoration and enhanced quality of life. This process is in-
herently complex and multifaceted, influenced by the nature of the diagnosis, the type of
surgical procedure, and various patient-specific factors. Demographic characteristics, such
as age, gender, and comorbidities as well as time since surgery and patient behaviors (e.g.,
mobility, physical activity, and sleep), significantly impact recovery trajectories (Cote et al.
(2019), Panda et al. (2020a)). While common recommendations often focus on early mobi-
lization activities, such as getting out of bed or taking light walks, developing personalized
care plans presents a greater challenge. To provide tailored suggestions that account for di-
verse patient factors and recommend specific actions (e.g., daily step targets), clinicians re-
quire both continuous access to patient health and behavioral data and flexible algorithms
capable of processing this information and providing interpretable insights.

The proliferation of smartphones and wearable devices has revolutionized our ability to
collect real-time, continuous data on human behavior and health, providing valuable insights
into patient recovery (Torous, Staples and Onnela (2015), Onnela (2021)). This mobile health
approach, when combined with statistical machine learning techniques, offers clinicians a
powerful paradigm for uncovering nuanced patterns in recovery trajectories and developing
more refined, evidence-based standards of care. By leveraging high-quality, temporally-dense
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FIG. 1. An overview of using nonparametric additive models for learning interpretable value functions. Within
our setting, real-world data from subjects with select physiological disorders are collected using a smartphone-
based mobile health platform. Modalities collected from subject smartphones range from raw sensor data (e.g.,
GPS, accelerometer, gyroscope, or magnetometer) to usage logs (e.g., anonymized communication and screen
time). Relevant features s = (sq, ..., sd)T are summarized from these modalities and are used to frame a corre-
sponding decision-making problem (or MDP, see Section 2.1) of interest. Under the select MDP, we model the
value function Q™ (s, a, x) as a sum of nonparametric component functions g,(x) and fja(sj,x) Vj. Here we
visualize the change in the shape and sparsity patterns of the component function f; ,(-,z) as the candidate
variable x changes, for example, x € {z1, 22, 23, z4}. Each additive component function can be estimated and
inspected using the kernel-weighted least square fixed point approximation detailed in Section 3.

data, healthcare professionals can now enhance their understanding of postoperative recovery
and pave the way for more personalized, adaptive, and effective treatment strategies (Panda
et al. (2020b)).

In this paper, we introduce a novel reinforcement learning approach for estimating recov-
ery strategies and recommendations using mobile health data (see Figure 1). Reinforcement
learning is a subfield of machine learning that focuses on learning sequences of decisions that
optimize long-term outcomes from experiential data (Sutton and Barto (2018)). In healthcare,
reinforcement learning algorithms have been used to discover decision-making strategies for
chronic disease treatments (Bothe et al. (2013), Peyser et al. (2014)), anesthesia regulation
and automation (Sinzinger and Moore (2011)), chemotherapy scheduling and dosage man-
agement (Padmanabhan, Meskin and Haddad (2015), Ahn and Park (2011)), and sepsis man-
agement (Raghu et al. (2017), Peng et al. (2018)).

Implementing reinforcement learning in healthcare applications requires careful consider-
ation of the policy estimation process and thorough examination of the learned policy’s be-
havior prior to real-world deployment (Gottesman et al. (2019)). Typically, decision-making
policies are represented as a function 7 (s) of state features s = (sq, .. ., sa)T e R?, estimated
using policy gradient or value-based reinforcement learning algorithms (Sutton and Barto
(2018)). In value-based approaches, policies are determined by selecting the action a that
maximizes the corresponding action-value function Q7 (s, a). Current methods often employ
neural network function approximators, resulting in black-box algorithms that are difficult to
interpret and provide minimal insight into which feature (or set of features) influenced the
decision-making process (Gottesman et al. (2019)). While linear models offer interpretabil-
ity, they fail to capture the complex, nonlinear relationships and interactions between clinical
variables that are crucial for understanding and optimizing surgical recovery, necessitating a
more flexible and interpretable approach.
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To address these limitations, we propose a novel class of approximate value functions
that offers a flexible, nonparametric representation of the action-value function, easily in-
terpretable for both researchers and clinicians. Our approach allows for the inspection of a
candidate variable x (e.g., time-varying/-invariant confounders or continuous-valued actions)
and models action-value functions as a sum of nonparametric, additive component functions,

d
(1) Q7 (s,a,x) =ga(x)+ Y _ fia(sj. X) +e.

j=1

This framework enables the examination of both the marginal effect of x and its joint effect
with state features s; under a discretized action space. To estimate these component func-
tions, we build upon the classical least square policy iteration (LSPI) algorithm (Lagoudakis
and Parr (2004)), incorporating a kernel-hybrid approach that relaxes traditional linearity as-
sumptions. By leveraging advances in high-dimensional, nonparametric additive regression
models (Fan and Jiang (2005), Ravikumar et al. (2009), Lafferty and Wasserman (2008)), we
introduce a kernel-sieve hybrid regression estimator (Lu, Kolar and Liu (2020)) to obtain a
sparse additive representation of the action-value function.

To validate our methodology, we present a simulation study examining its ability to es-
timate nonlinear additive functions and compare its performance against modern neural
network-based approaches. Furthermore, we apply our model to an ongoing mobile health
study, demonstrating its capacity to learn and interpret a decision-making policy aimed at im-
proving pain management and functional recovery in patients recovering from spine surgery
through mobility management.

1.1. Related research. Our work contributes to the growing literature on function ap-
proximation methods for value-based reinforcement learning. Current state-of-the-art algo-
rithms approximate action-value functions using expressive modeling architectures, such as
neural networks. By combining fitted Q-iteration procedures with modern tools, such as
replay buffers and target networks, these algorithms resolve the pitfalls of classical meth-
ods and solve complex, high-dimensional decision-making tasks (Riedmiller (2005), Antos,
Szepesvari and Munos (2007), Van Hasselt (2010), Mnih et al. (2013, 2015)). However, the
powerful flexibility of these approaches comes at the cost of interpretability inherent in algo-
rithms such as least squares policy iteration (LSPI).

LSPI is a model free, off-policy approximate policy iteration algorithm that models the
action-value function using a parametric linear approximation and finds an approximate func-
tion that best satisfies the Bellman equation (i.e., the fixed-point solution) (Lagoudakis and
Parr (2004)). While LSPI provides an unbiased estimate of the action-value function, it faces
significant challenges when the model is misspecified and when the dimensionality of the
feature space is high (Lagoudakis and Parr (2004), Farahmand et al. (2016)). Several modifi-
cations to LSPI have been proposed in the reinforcement learning literature. In settings where
the feature space is large, several approaches exist for finding sparse solutions in a linear
model (Hoffman et al. (2012), Kolter and Ng (2009), Tziortziotis and Dimitrakakis (2017),
Geist and Scherrer (2011)). Alternatively, Xu, Hu and Lu (2007) propose a kernel-based
LSPI algorithm that operates in an infinite-dimensional Hilbert space and allows for nonlin-
ear feature extraction by selecting appropriate kernel functions. Additionally, Howard and
Nakamura (2013) propose a locally-weighted LSPI model that leverages locally-weighted to
construct a nonlinear, global control policy.

To date, no approximation methods in RL have been introduced that directly allows for
the nonparametric estimation concerning the additive contribution of select features and joint
feature pairs. In the supervised learning literature, several approaches exist for estimating
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nonparametric component functions in high-dimensional feature spaces. Several of these ap-
proaches include generalized additive models (GAM) and sparse additive models (SpAM),
to which our approach draws parallels (Ravikumar et al. (2009), Hastie (2017)). To bridge
these areas of research, we reformulate the policy evaluation step of the classical LSPI algo-
rithm and propose incorporating the kernel-sieve hybrid regression estimator introduced in
Lu, Kolar and Liu (2020). This approach provides a powerful function approximation tech-
nique for locally estimating action-value functions using a loss function combining both basis
expansion and kernel method with a hybrid € /€,-group Lasso penalty.

1.2. Organization of the paper. The remainder of this paper is organized as follows. In
Section 2.2 we introduce our generalized, nonparametric model for representing action-value
functions. Section 3 presents our estimation strategy for locally approximating the action-
value function by combining basis expansion and kernel methods. Section 4 examines the
results of a simulation study, highlighting the performance of our method in estimating sparse
additive components of the action-value function. Section 5 introduces a real-world cohort
of patients recovering from a neurological intervention for spine disease as a motivating case
study. In Section 6 we apply our method to this mobile health study and interpret the estimated
recovery strategy. Finally, Section 7 discusses the limitations of our method and proposes
future extensions to address them.

2. Nonparametric additive value functions.

2.1. Preliminaries and notation. We consider a discrete-time, infinite horizon Markov
Decision Process (MDP), defined by the tuple {S, A, P, R, y}, where S is a continuous d-
dimensional state space, A is a set of discrete (i.e., A = {1, ..., k}) or continuous (i.e., A =
R) actions, P(s'[s, a) is a next-state transition probability kernel that specifies the probability
of transitioning from state s € S to the next state s’ € S after taking actiona € A, R : S x
A — R is a reward function, and y € [0, 1] is a discount factor for weighting long-term
rewards. Within this stochastic environment, the action selection strategy is determined by a
deterministic policy, 7 : S — A.

To assess the quality of a policy, the expected discounted sum of rewards, when starting at
state s and following policy 7, can be computed using the value function V7" : § — R. The
value function starting from state s is defined as

Sinit = Sj| )

where r; represents the reward at time i and sjp;; is the initial state.

In control problems where we are interested in improving our action selection strategy, it
is useful to consider the action-value function Q" : S x A — R. Given a policy 7, Q" repre-
sents the expected discounted sum of rewards after taking action a and state s and following
policy m thereafter, that is,

o0

) V7 (s) =Ex {Z y'ri

i=0

3) Q" (s,a) =E, [Z yir

i=0

Sinit = S, dinit = a:| .

Due to the Markovian property of our MDP, the action-value function (as well as the value
function) is a fixed point of the Bellman operator Q™ = 7, O, where the operator 7T is
defined as

4) (T2 Q)(s,a) = R(s, a)+y/$Q(s/,n(s/))dP(s/|s,a)
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FIG. 2. Representation of a nonparametric additive value function QT (s, a, x) with respect to the candidate
variable x as detailed in (5).

or, equivalently, in vector form as 7, Q = R + yP* Q, where R € RISIMI ig a reward vector
and P e RISIAIXISIAL g the induced transition matrix when following policy 7 after a next
state transition according to P(s'[s, a).

For a given MDP, the optimal action-value function is defined as Q*(s, a) = sup, Q" (s, a)
for all states and actions (s,a) € S x A. For a given action-value function Q, we define a
greedy policy 7 as 7w (s) = argmax,ec 4 Q(S, a) for all s € S. The greedy policy with respect
to the optimal action-value function Q* is then an optimal policy, denoted as *. Hence,
obtaining Q* allows us to arrive at an optimal action selection strategy.

2.2. Generalized framework. For an arbitrary policy m, we introduce a generalized
framework for modeling the action-value function Q" as a sum of nonparametric addi-
tive component functions, as shown in Figure 2. Our approach handles both discrete (i.e.,
A=1{1,...,k}) and continuous (i.e., A = R) action spaces, while allowing for the incorpo-
ration of potentially time-varying or time-invariant variables.

First, we present our generalized nonparametric framework for modeling Q7 as

d
(5) Q7 (s,a,x) =ga(x)+ Y fjalsj.x) +e.
j=1

Under this model we expand the input space of Q7 to include the candidate variable x € R,
and discretize the action space such that a € {1, ..., k} if A is not already discrete. Accord-
ingly, g4 (-) represents the additive marginal effect of x under action a, and f; (-, -) represents
the additive joint effect of interactions between x and state features s; under action a. Without
making specific assumptions on the functional form of g,(-) and f; (-, -), our model allows
us to carefully examine additive nonlinear relationships that exist among relevant state fea-
tures, actions, and the variable x.

Second, our choice in x allows us to explore several unique representations of the additive
components in (5). For example, x can represent time-varying or time-invariant confounders
(e.g., age, gender, or the number of days since a surgical event) as well as continuous-valued
actions a € R,

so, thatis, a candidate state feature or confounder,

(6) X =

a, thatis, a continuous action.

EXAMPLE 1. When x = sg, the additive functions in (5), respectively, equate to g,(x) =
8a(so) and fj 4(sj, x) = fj a(S;j, o). Furthermore, we can augment the state space S, using

x to form S; = {x,sy,...,s4}, and succinctly represent Q” (s, a, sg) as Q" (s4, a), where
s+ € Sy and

d
@) Q7 (s4.a) =ga(s0) + Y, fj.a(sj.80) +€.

j=1
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Thus, under the discrete action a, g,(sp) models the nonlinear marginal effect of the con-
founder or state feature so, whereas f; 4(s;, So) models the nonlinear interaction between sg
and state features s;.

EXAMPLE 2. Similarly, when x = a, the additive functions in (5), respectively, equate
to gu(a) = g(a) and f; 4(sj,a) = fj(sj,a). Under this choice of x, we avoid explicit dis-
cretization of the action space A and directly treat a as a continuous action. Thus, for a given
state action pair, Q” (s, a, a) reduces to Q7 (s, a), where

d
(®) Q" (s,a)=g(@) + ) fi(sj, a) +e,

Jj=l1

and the additive marginal effect of selecting a continuous action a is modeled as g(a), and
fji(sj, a) represents the additive effect of selecting action a under state feature value s;.

3. Kernel sieve hybrid-least squares policy iteration. We introduce a general ap-
proach for estimating Q7 (s, a) for both discrete and continuous action spaces. This estima-
tion strategy provides an intuitive way to: (1) locally approximate the action-value function
as an additive model with independent state features spanned by a B-spline basis expansion,
(2) retrieve an estimate of the nonlinear additive components, and (3) obtain a sparse rep-
resentation of the action-value function by selecting relevant regions of the domain of the
component functions.

3.1. Basis expansion. First, we model the action-value function using a centered B-
spline basis expansion of the additive component functions. Let {y1, ..., ¥,,} be a set of
normalized B-spline basis functions. For each component function, we project f; , onto the
space spanned by the basis, B,, = Span(y1, ..., V). Thus, fj .(s;, x) can be expressed as
Y1 @je(spP je:a(x), where @j¢ are locally centered B-spline basis functions defined as
@je(s) =Ye(s) — E[Ye(s;)] for the jth component function and the £th basis component.

As we will discuss in Section 3.2, our estimation strategy relies on performing a locally-
weighted least-squares minimization of an objective criterion with respect to a fixed value
of the variable x. As such, we locally express our model in (5) by: (i) setting x = z, where
z € X is some arbitrary fixed value, and by (ii) using the aforementioned centered B-spline
basis expansion,

d m

9) Q"(s.a.x=0)~aa:+ Y, Y 0je(s)Bjta.:-

j=le=1

Under this local model, «, , € R represents that marginal effect g, (x) when z is a fixed value
of x. Accordingly, Bj.q,, € R is the coordinate corresponding to the £th B-spline basis of the
jth state-feature under z.

In Examples 1 and 2, we observe two choices for representing x that highlight the gener-
alizability of our model structure. Under theses examples, the local additive components in
(9) can also be reexpressed as follows:

aq; Wwhenx =s, Bjt:a,; Wwhenx =sg,
and IBje;a,z =,

(10) Ua,z = i

o when x =a Bije:z when x =a.

Since the dynamics of the MDP are unknown, our estimation strategy relies on a batch
dataset D = {(s[’], alil plil gl x[’])}lN: ; of sampled transitions from the MDP of interest,
where sl ~ P (-|sl!], alil) and x!! is the associated value of the candidate variable x. When
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we consider all observations in the dataset D, we can equivalently reexpress (9) in vector
form as

(11) 03, =®p,.
where B4 = (ﬁlT—H o "B\]:éllJr)T c R(H—dm)lA\’ ﬂa+ = (0tg., ﬂlT;a,z’ s ﬁg;a,z)T c RH—dm’
and
T T T
p(st, " o' 1(@M=1) - @ M) 1V =k)
(12) &= : = :
T T T
d(stN1, oM o+ ("N 1@ =1) o @i (V) 1M =k)
such that @ € RV*(UHmMIAI ", (5) = (1 ga(s1) -+ @a(sa))” € RIF™ and ¢;(s;)) €

R™ is a B-spline basis component vector. Note that E[v,(s;)] is estimated as ¥, =
N~! ZINZI Yo (sg.l]) by using a sample of N data points from the dataset D.

3.2. Kernel-weighted least squares fixed point approximation. We estimate our model
parameters B, by minimizing a kernel-weighted version of the classical projected Bellman
error (PBE).

In LPSI we observe that a simple procedure for estimating a linear action-value function
is to force the approximate function to be a fixed point under the projected Bellman operator
(ie., 1T, Op . ~ Qg ). For this condition to hold, the fixed point of the Bellman operator
T must lie in the space of approximate value functions spanned by the basis functions over
all possible state action pairs, C(®). By construction it is known that Qg L= ®B., € C(D).
However, since there is no guarantee that 7; Qg N (i.e., the result of the Bellman operator)
is in C(®), it first must be projected onto C(®), using the projection operator IT, such that
17 Q§+ = ®u* where u* is the solution to the following least-squares problem:

(13) u* =argmin | Qg, — 7> Qp, |5 = argmin | ®u — T, @B |3.
QeC(®) ueRk

Empirically, u* can be estimated using a sample-based feature design matrix ® constructed
from a dataset of N transitions D,

(14) u* = argmin || ®u — 7, ®B_ ||3
ucRk
N . . . . .
(15) = argmin 3 (95", d)'u = [ 4y (s, 7 (7)) B )7,
ue i=1

where 7;, is the empirical Bellman operator (7; Q0p)(s,a) =r(s,a) +y Qp(s’, m(s)) defined
using a single transition {s, a, r, s’} from D.

Rather than performing the projection step according to an £>-norm, we propose using
a kernel-weighted norm with weights that are centered at a fixed value z that lies within
the domain of the candidate variable x. Let K : X — R be a symmetric kernel function
with bounded support. We denote Kj(-) = h 1K (- / h), where h > 0 is the bandwidth. The
solution u} to the kernel-weighted projection step is estimated as follows:

N
(16) u} = argmin ) Kj(x — z)(p(s'", adMu = [ 4y (s, 7 (1)) BL])°
ueRk ;1

(17) = argmin(®u — T, 8 ) W, (du—T,88,) = (& W.9)'d' W.T,88, .

ucRk
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..............................................................................................................................

Step |. Construct kernel-weight matrix Step 2. Perform kernel-weighted least squares
: i fixed point approximation T+Qa.
W. = diag(Kn(a! — 2) - Ky, (2N — 2)) e RNV :

Tona[oid Ty

i =h" K (|a H—z\/h):

................................................................

FIG.3. A step-by-step illustration of kernel-weighted least squares fixed point approximation. First, using obser-
vations gathered in the batch dataset D, we construct a diagonal kernel-weight matrix W ;, where each diagonal
weight is a function of the distance between the observed candidate variable xU1) and the fixed value z. Second,
let F be C(®), that is, the space of approximate value functions. Since applying the Bellman operator Ty to an
arbitrary value function Q B, can push the resulting quantity T Qg out of the space F, we perform a projection

step using the constructed kernel-weighted matrix W ; (detailed in Section 3.2). This approach diﬁ’erv from clas-
sical least squares fixed point approximation (shown in grey) where an {,-projection operator I1 is used. Lastly,
we find ,B+ that minimizes the €y-norm between Q B and HW Tx OF B , that is, the kernel-weighted projected

bellman error.

where W, = diag(Kj, M =2 K, (xVT—2)) e RVN jsa diagonal kernel-weight matrix.
Under this weighted norm, transitions with a candidate variable x!/! that are local to z con-
tribute more to the overall fit of the least squares minimization. Accordingly, the empirical

kernel-weighted projection operator is ﬁWz = <i>(<i>TWZ o)! <i>TWZ.
Using the projection operator m w,, we can now directly find B4 that minimizes the kernel-
weighted empirical PBE represented as
=T = 2
18)  Ep=]0F, ~Mw.7:0F [=[96, — (@ W.8)'&' W.T, 85 [3.
8By

Since ®g(B) € C(®), minimizing this objective function is equivalent to solving for B 4 in
®B, = ®g(B_), which can be simplified as

(19) &' W.(®—y®)p, = W.R,
A; b,
where ® = (¢!, 2NT ... ¢V, (V') T)T . Thus, the solution to minimizing

the kernel-weighted empirical PBE can be obtained analytically as [3 L= Az_lbz. This proce-
dure is summarized in Figure 3.

3.3. Componentwise regularization via group Lasso. Since we are interested in obtain-
ing a sparse representation of the elements in 8, we apply a penalty to an estimating equa-
tion £, (B ) of (19). Since the components of our basis functions are grouped by features, we
incorporate a group Lasso penalty that performs group-level variable selection by jointly con-
straining all coefficients that belong to a given feature. Consequently, the primary objective
function for our estimator is

| Al

(Q0) L.(B))+IR(B.) =~ BLAB, — BLb. +AZ< ol + 3 1B alz)

Jj=2

where A is a regularization parameter. Note that the group Lasso penalty R(B. ) includes
a 4/m factor, which is used to appropriately scale the strength of the regularization term A
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Algorithm 1: KSH-LSTDQ (via Randomized Coordinate Descent for Group Lasso)

Input: 7z (Fixed value), ﬂg) (Initial weights), K (-) (Kernel function), 0 <y < 1
(Discount factor), u (Step size), € (Stopping Criteria), A (Regularization Parameter),
7 (Current Policy)

Data: Dataset of transitions D = {(sl/], al!], rli] slil/, )c[i])}f\’:l

Initialization: Construct W, ® and @’
while [B{TD — Y| > ¢ do
Select j € [d] with probability 1/d
for a € Ado

| Update B0 < U, /u(BY), — 1 @5, Wo(® — y®)BY — R))

end
end

applied to |a,| and to that of the coefficients of the B-splines basis functions. This ensures
that the grouped coefficients get evenly penalized.

To estimate B, under the objective function (20), we use the randomized coordinate de-
scent method for composite functions proposed in Richtdrik and Takac¢ (2014). Under this
procedure we: (1) randomly select a coordinate j from {1, ..., d} under a fixed action a and

(2) update the current estimate of ,Bj(t)a We then repeat steps (1) and (2) until convergence to

ﬁ . Each update in (2) can be written in closed form as

2D U(ﬂ?;)a) =Up;j/n (ﬂﬁ”a - MVj;aEZ('Bg{)))
(22) =y, /u(BY), — n®L W ((® -y @)Y - R)).

where U, is a soft-thresholding operator defined as U, (v) = (v/||V]l2) - max{O0, ||v|l2 — A}, w is
the step size, and A ; are regularization parameters. Note that . = A /m and 1 ; = AV € [d].
Details of the estimation procedure of KSH-LSTDQ are provided in Algorithm 1.

This algorithm allows us to retrieve an estimate of B, relative to the fixed value z and,
accordingly, approximate the additive functions in (5) as

(23) 8a(2)=8u: and fia(s;. 2= @ik()Bjkaz Vi=2.
k=1

To retrieve a nonlinear, smooth estimate of g,(-) and f; ,(s;, -), respectively, we compute the
estimators &, ; and f; 4(s;, z) for each value of z contained within the set Z = {z1, ..., zm}

that densely covers the domain of x. This procedure amounts to running Algorithm 1 M times
(i.e., once for each element in 2).

3.4. Approximate policy iteration. The aforementioned estimation strategy is a policy
evaluation method for obtaining an approximate representation of the action-value function
Q7 under a fixed policy 7. By using policy iteration, we can construct a procedure for esti-
mating Q* under an improved, or potentially optimal policy 7* (Howard (1960), Bertsekas
(2011)).

To perform policy iteration, we begin with an arbitrary policy g or the behavioral policy
7p used to generate D. At each iteration 7, we evaluate the current policy 7; by estimating Q7
according to (9) over a grid of local points Z = {z, ..., zpi}. The policy improvement step
follows by using the recently approximated action-value function Q7 to generate the new
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Algorithm 2: KSH-LSPI
T T —
Data: D = {(sl'], ali] pli] glil’, x[’])}.i?1
Input: Z (Array of fixed values), {ﬁf(‘l.)}l.ill (Initial weights), K (-) (Kernel function),
0 <y <1 (Discount factor), u (Step size), € (Stopping Criteria), A (Regularization
Parameter)

Initialization: Construct ®

BO =[ ijrli(tl.)]}ﬂ (Matrix of model weights)

while |B¢TD — BD||r <€ do
Construct @ w.r.t. a greedy policy 7 (s) = arg max, 07 (s,a) using Section 3.4.
forie{l...,|Z]|} do
| BV — KSH-LSTDQ(®, &', B, z;,...)
end
end

greedy policy m;41. Since Q7 is represented using a grid of m local models (each computed
with respect to each fixed value of x), the action selection strategy and representation of 7, |
is closely determined by our choice of x. This process, as detailed in Algorithm 2, repeats
until convergence.

EXAMPLE 3. When x = sy, we represent the greedy policy m(s) using the local
model whose value of z is closest to sg. In other words, let Z = {z1,...,zy} and B €
RMx+@d=Dm)IAl be a matrix of weights, where each row i corresponds to a set of
model weights estimated under the value z;. The greedy policy 7 (s) is defined as w(s) =
argmax, ¢ (s, a)T B;+., where i* = argmin;e(1...m) [So — 2il.

EXAMPLE 4. When x = q, the greedy policy is represented as the fixed value z of local
model that maximizes its associated action-value function. Let Z = {z1,...,zy} and B €
RMx+d=Dm) be 3 matrix of weights, where each row i corresponds to a set of model
weights estimated under the value z;. The greedy policy 7 (s) is defined as 7w (s) = z;+, where
i* = argmax; ¢ (s, I'B,..

4. Simulation study. In this section we perform a simulation study to examine the key
properties of the KSH-LSTDQ and KSH-LSPI algorithms. We highlight the performance
of the KSH-LSTDQ algorithm in estimating nonlinear marginal additive functions g,(x),
examine its sensitivity to different environmental and model configurations, and compare the
performance of the KSH-LSPI algorithm against several neural network-based approaches.

4.1. Estimating marginal components. We consider a multidimensional, continuous state
MDP with binary actions and an additive reward function. For each sampled trajectory, the
initial state vector s©© € R is sampled uniformly from [0, 11¢. At each time step ¢, we ran-
domly sample an action a® € {0, 1} with probability % Accordingly, the state transition
function is defined as

(24) s = (—1)4(sin(x + au) + O.I(S(t))z) +e,

where x ~ Unif(0, 2)d, u ~ Unif(0, l)d , and € ~ N (0, oT). This transition function allows
us to explore complex, nonlinear dynamics into the MDP. We construct a reward function

(25) r(s,a) =ui(s1,a) +ux(sz,a)
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with reward components that are reliant only on the state features s; and s, where
(26) ui(s1,a) = (581 +5)1(a=1) — (257 — 5)1(a =0),
27) un(s2,a) = (5sin(s3) 4+ 5)1(a = 1) + (482 — 5)1(a =0),

and g;j(s;,a) =0 Vj > 3. For an arbitrary policy 7, the construction of this reward func-
tion induces a corresponding action-value function that is additive with respect each nonzero
reward component, specifically,

Q]T (S, Cl) — ]E;T [Zyir(s(i), Cl(i))

i=0

2 oo ) )
=Y E |:Z yiuj (sﬁ.’), a)
j=l1 i=0

s =549 = a:|

sO =540 = a]

=U(s1,a) + Uzx(s2,a).

Using n trajectories sampled from this MDP (represented as a batch dataset D), we eval-
uate the behavioral policy (i.e., 7 (sl'l) = al’l) and retrieve the marginal component function
ga(x) of the following nonparametric additive model:

(28) Q7 (s,a)=ga(s)+ D> fia(sj,s)+e€,

jeldl/i

where x =s; and i € {1, 2}. For each component function, we explored using a B-spline basis
(with hyperparameters including bandwidth /4, number of basis functions m, and the degree
of each piecewise polynomial) or a trigonometric basis function (hyperparameters include
the number of basis functions m). We select the model’s hyperparameters (including the reg-
ularization penalty A and step size p) using five-fold cross-validation. For each combination
of hyperparameters, we compute the average out-of-sample Bellman loss across the five folds
and select hyperparameters 6* that minimize the average loss. To measure the performance
of our model against a target, we utilize Monte Carlo (MC) sampling on the MDP to retrieve
a direct estimate of the Q7 (s, a), evaluated as

n ¢
(29) Ofic(s.a) = 1ZZV’n~j,
=

where ¢ is the length of each trajectory and n is the number of sampled trajectories. Since
our action-value function is additive, we can similarly construct MC estimates for the
component functions Uj(s1,a) and Us(sz,a). Lastly, using a prespecified grid of points
Z =1{z1,...,zm}, we repeat Algorithm 1 M times to obtain smooth estimates of g,(s;),
as described in Section 3.3.

Figures 4 and 5 present the nonlinear marginal component functions of the estimated
model, as described in equation (28), and an ablation study over MDP and model hyper-
parameters, respectively. The dataset D comprised n = 100 sampled trajectories, each with a
length of £ = 10. MC estimates were obtained by sampling 100 trajectories of length £.

Figure 4 compares the MC estimate of u;(s;, a) with the estimated component function
8a(s;) derived from the KSH-LSTDQ estimator, using bandwidths of # =0.01 and & = 0.1.
In this scenario we set the state space dimensionality to d = 10 and the discount factor to y =
0.5. As the kernel function’s bandwidth increases, the model generates a smoother component
function, attributable to larger weights being assigned to observations further from each local
point z. Notably, in sparsely sampled regions of the domain, the component function values
tend toward zero, particularly with smaller bandwidths. This effect is partially driven by the
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(b) Marginal effect gq (s2) vs. Monte-Carlo estimate of Us(s2, a).

FIG. 4. A comparison of estimated marginal component functions g,(s;) and MC-estimates of u;(s;, a), as
described in Section 4.1. For each action the solid lines represent the estimate of the marginal component function,
ga(8;), of O (s, a) as modeled in equation (28) under a bandwidth of h = 0.01 (leff) and h = 0.1 (right) under
y = 0.5, while the dashed line represents the Monte Carlo estimate of U; (s;, a). The observed distribution of the
state feature s; is displayed using the density in grey.
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Results of the simulation study described in Section 4. Average Bellman loss (y-axis) vs. discount factor

y (y-axis) stratified by the dimensionality of s;, regularization penalty \, bandwidth h, and step size |v. For each
parameter setting, the solid lines represent the average Bellman loss as a function of y, while the different line
colors denote variations in dims;, A, h, and .
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group Lasso penalty, which shrinks estimates within these sparse regions toward 0. While our
model generally captures the underlying function’s shape in nonsparse domain regions, our
estimates may exhibit slight bias for complex functions.

Figure 5 illustrates results from an ablation study, depicting the average Bellman loss esti-
mated across all folds on the y-axis against six different discount factors (y =0.1,...,0.99)
on the x-axis. The results are further stratified by state space dimensionality dims;, regular-
ization parameter A, bandwidth £, step size p, and choice of basis expansion method.

Generally, we observe, that as the discount factor y increases, the average Bellman loss
decreases. This can be attributed to increased instability in model estimation, as future next-
state transitions and actions (i.e., y ®’) are weighted more heavily, potentially leading to a
singular matrix A, in equation (19). The results also indicate that the effect of increasing
y can be mitigated by increasing the strength of the regularization parameter (especially in
trigonometric polynomial basis functions) and by using smaller step sizes. Furthermore, we
observe minimal sensitivity to changes in the state dimension for B-spline basis functions,
compared to trigonometric basis functions, where the average Bellman loss decreases as the
state dimensionality grows. Lastly, we generally observe that as the bandwidth increases, the
average Bellman loss across y decreases.

4.2. Comparison to neural approaches. We evaluate the performance of the KSH-LSPI
algorithm against several widely-used neural network-based approaches, specifically: neu-
ral fitted Q-iteration (NFQ), deep Q-network (DQN), double deep Q-network (DDQN), and
conservative Q-learning (CQL) (Mnih et al. (2013), Van Hasselt (2010), Riedmiller (2005),
Kumar et al. (2020)). Each model is trained using a batch dataset of experiences, which is
gathered from a random policy interacting in an MDP with correlated state features and an
additive reward function. Similar to equation (25), the reward function is dependent on the
first two state features {s, s} and the selected action a. Appendix A.l in the Supplemen-
tary Material provides a detailed description of the MDP and the data generation process
(Emedom-Nnamdi et al. (2025)). In each experiment we adjust the dimensionality of the
MDP’s state space and the number of episodes used to generate the batch dataset. For the
KSH-LSPI algorithm, we fit a separate model, where the candidate feature x is represented
as one of the first three state features {s{, s», s3}. Here each state feature, denoted as s;, con-
tributes to the marginal component, g, (s;), as illustrated in equation (28). We perform policy
iteration in accordance with Example 3, setting the maximum number of allowed policy iter-
ations to three. Detailed specifications and architectures of both the KSH-LSPI models and
the neural network-based approaches can be found in Appendix A.2 in the Supplementary
Material (Emedom-Nnamdi et al. (2025)).

The estimated policies for each approach were evaluated within the MDP used to generate
the training batch data set. Specifically, each policy was rolled out for 10 time steps (i.e.,
an episode), 1000 times. We performed a regret analysis, where, at the end of each episode,
the difference between the optimal reward at each time step and the reward obtained by
the current policy was calculated. The average of these differences over all episodes was
then computed to obtain the estimated mean regret for each experiment. Figure 6 presents
results from the regret analysis, where the dimensionality of the state space and the number of
episodes used to generate the batch dataset were varied. Within each experiment we observe
that the KSH-LSPI model under a candidate feature of s, and s3, performs similarly to neural
network-based approaches, when the number of episodes is 100, and worse when the number
of episodes used in the generated batch data set increases to 1000. Conversely, when s; (i.e.,
the feature that accounts for the most variation within the observed rewards) is set as the
candidate feature, the KSH-LSPI model outperforms the neural-network based models and is
further improved as the number of episodes increases. These results highlight a key sensitivity
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54 == DON = KSH-LSPI, 5 5 == DON = KSH-LSPI, 5
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(a) Dimensionality of s; is 5. (b) Dimensionality of s; is 50.

FIG. 6. Regret analysis comparing the performance of KSH-LSPI models, where the candidate feature x is
independently represented using state features {S1, 2,3} and neural network-based approaches, as described
in Section 4.2. Within each subfigure the dimensionality of the state space and the number of episodes used to
generate the batch dataset are varied.

in the KSH-LSPI model; that is, the appropriate selection of the candidate feature x largely
influences model performance.

Lastly, the marginal performance differences among the neural network approaches
may be attributable to the simulation environment. For example, in more complex, high-
dimensional environments with offline data, we would expect approaches such as CQL to
provide more significant benefits.

5. Motivating case study. Postoperative recovery is defined as the period of functional
improvement that occurs from the end of surgery and hospital discharge to the instance in
which normal function has been restored (Bowyer and Royse (2016)). Depending on the
type of surgery administered, this period of functional recovery can vary drastically and be
accompanied by mild to severe complications. For patients who received corrective surgery
for spine disease, postoperative recovery is impacted by the complexity of the diagnosis and
surgical procedure received. Additional barriers to recovery for spine disease patients include
stress, pain, cognitive dysfunction, and potential postoperative complications (Wainwright,
Immins and Middleton (2016)).

To improve postoperative recovery and care for spine patients, physicians employ a multi-
pronged approach focusing on protocols that accelerate functional recovery, decrease postop-
erative complications, and improve subjective patient experience (Elsarrag et al. (2019)). As
part of this effort, patient mobilization and consistent pain management are heavily suggested
(Burgess and Wainwright (2019)). To advance these efforts, physicians require objective mea-
surements of a patient’s functional capacity and pain over the course of their recovery (Cote
et al. (2019), Panda et al. (2020a), Karas et al. (2020), Boaro, Reeder and Siddi (2021)). With
respect to spine patients, such measurements can provide a formal understanding and quan-
tification of mobilization activities that expedite overall patient recovery and minimize the
risk of complications.

We consider n = 67 neurosurgical spine patients with a median age of 57 years (IQR:
48-65.5) who were enrolled between June 2016 and March 2020 as part of a mobile health
study at Brigham and Women’s Hospital. Each patient underwent a neurosurgical intervention
in relation to their spine disease. For data collection, patients installed the Beiwe application
on their smartphones. Beiwe is a high-throughput research platform that was developed by
the Onnela lab at Harvard T.H. Chan School of Public Health for smartphone-based digi-
tal phenotyping on iOS and Android devices. Passive features collected on Beiwe include
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TABLE 1
Subset of GPS and accelerometer-based summary statistics. Definitions can be found on the Forest GitHub
repository (www.github.com/onnela-lab/forest)

Distance Traveled (km) Radius of Gyration (km) Average flight duration (km)

Time Spent at Home (hours) Maximum Diameter (km) Fraction of the day spent stationary
Max. Distance from Home (km) Num. Significant Places Visited Time Spent Walking

Average flight length (km) Number of Steps Average Cadence

GPS and accelerometer data in their raw unprocessed form, Bluetooth and WiFi logs, and
anonymized phone call and text message logs. Samples were collected from the GPS data
stream for one minute every five minutes and from the accelerometer data stream for 10 sec-
onds every 10 seconds. Using raw data sampled from GPS and accelerometer sensors, a set
of behavioral characteristics is calculated regarding patient mobility at the daily level (Liu
and Onnela (2021)). A subset of these features are represented in Table 1. For active data
collection, patients were electronically surveyed once daily at 5 p.m. Eastern Standard Time
to evaluate their current pain level. The prompt of the micro-survey was “Please rate your
pain over the last 24 hours on a scale from 0 to 10, where 0 is no pain at all and 10 is the
worst pain imaginable.”

In conjunction with the daily self-reported micro-surveys, these constructed features allow
researchers to objectively identify postoperative trends in mobility and pain as it relates to
overall functional recovery, as shown in Figures 7 and 8 (Boaro, Reeder and Siddi (2021),
Cote et al. (2019)). To this end, we leverage reinforcement learning to estimate and interpret
mobility-based action-value functions that provide recommendations concerning questions
such as “What level of mobilization is advisable after surgery?” and “How should these levels
be adjusted given a patient’s current condition?”” The overall goal of these recommendations
is to manage a patient’s overall pain level and promote improved recovery. Furthermore, by
utilizing an interpretable representation of the estimated action-value function, we seek to
identify clinical and behavioral features that are important to consider for decision-making.

6. Application to surgical recovery. Using data from the spine disease cohort in Sec-
tion 5, we use nonparametric additive models to estimate action-value functions associated
with:

1. A behavioral policy that aims to mimic decisions commonly taken by patients, and
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fitted local regression (i.e., black line) for a random selection of patients. While surgery corresponds to a sharp
decline in self-reported pain, we observe a heterogeneous recovery experience among these four patients.

2. An improved policy retrieved from performing approximate policy iteration on the
estimated behavioral policy.

In both cases the estimated decision-making policy aims to suggest the daily number of steps
necessary to reduce long-term (y >> 0) postoperative pain response. We explore both discrete
and continuous action spaces and provide a practical interpretation of the additive functional
components, as presented in equations (7) and (8), respectively.

6.1. Data preprocessing. We consider the recovery period of n = 67 neurosurgical spine
disease patients with a mean postoperative follow-up of 87 days (SD = 51.21 days). Base-
line clinical information on this study cohort can be found in Table 2. Behavioral features,
derived from raw GPS and accelerometer data, were summarized on a daily time scale to

TABLE 2
Participant demographic information and mobile health data for spine
disease cohort. Summaries are computed according to the first 60
postoperative days since surgery (including the day of surgery)

Variable n (%) or Median (25th—75th)

Demographic Data
Age 57.0 (48.0-65.5)

Female gender 34 (50.7)
Site of surgery

Cervical 19 (28.4)

Lumbar 27 (40.3)

Thoracic 2 (3.0

Multiple 18 (26.9)
Data Collection

GPS days of follow-up 61 (49-61)

Accelerometer days of follow-up 61 (50.5-61)

Daily pain survey response rate

Digital Phenotypes
Number of places visited
Time spent at home (hours)
Distance traveled (km)
Maximum distance from home (km)
Radius of gyration (km)
Time spent not moving
Average cadence
Number of steps

59.4 (42.4-76.9)

3(2-5)
18.3 (12.9-21.9)
32.3(10.8-62.3)
10.6 (4.5-25.5)
1.50 (0.18-5.01)
21.2 (20.2-22.2)
1.64 (1.55-1.74)

948.6 (356.9-2005)
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closely monitor each patients’ clinical recovery and/or progression after surgery. These fea-
tures include passively sampled summary statistics that uniquely describe a patient’s daily
mobility and activity levels.

We construct a simple MDP where each time step ¢ corresponds to a day since surgery.
The state space, S € R4, is a multidimensional, continuous state vector that consists of rel-
evant behavioral features and patient-specific demographic information (i.e., age and days
since surgery). In total, d = 9 features were used in this analysis.! The action space A € R
represents the number of steps taken per day. For the discrete action model, the action space,
A € {0, 1}, is binarized such that 0 represents moving less than the subject-level preoperative
median number of steps taken per day and 1 represents moving above this threshold. The re-
wards, r € R, are chosen to be the negative value of the self-reported pain score, where each
score is taken from a numerical rating scale between O (i.e., no pain) and 10 (i.e., worst pain
imaginable). Lastly, we consider a discount factor y of 0.5 to examine estimated policies that
aim to reduce long-term pain response.

Under this MDP we consider up to the first 60 days since surgery for each patient. Pa-
tients with a postoperative follow-up period of less than five days were excluded. Entries
with missing values in either the behavioral features or the daily self-reported pain scores
were removed. The batch dataset D with N = 1409 daily transitions was constructed using
data collected from the study cohort and represented using the MDP. All state features were
normalized to a [0, 1] range for model fitting.

6.2. Model fitting. To estimate the action-value function associated with the behavioral
policy 7, we use Algorithm 1 and construct @’ using the observed next-state action con-
tained within each patient-level trajectory in D. That is, ®}, = ¢ (s’ i1 gli+11y for the ith ob-
served transition. Accordingly, we estimate the action-value function for the improved policy
¥ using approximate policy iteration (as detailed Algorithm 2) on the action-value function
associated with the behavioral policy. For both discrete and continuous action versions of

the general model (5), we use a Gaussian kernel K (#) = ¢~2 and a grid of evenly spaced
points Z within a [0, 1] range for discretization. In the discrete action model, we estimate the
marginal effect g,(x) and the additive joint effects f; ,(s;, x) for j > 2 for each candidate
state feature x in a set H, where x #s;.

To select the hyperparameters of the KSH-LSTDQ estimator (i.e., the degree of the
B-spline functions, the number of basis functions, the bandwidth, and the regularization
penalty), we partitioned the dataset D into training and validation sets according to a
80%—-20% patient-level split and performed a grid search. Using these partitions, we retrieved
a set of hyperparameters that minimized the validation mean squared error between the esti-
mated action-value under the behavioral policy when y = 0 and the true immediate rewards,

> (0™, a) 1)

(8,a,7)~Dval

MSE(Dva) = Dval
a

Accordingly, these hyperparameters were used to retrieve the KSH-LSTDQ estimators for
MDPs where y is set to 0.5. The set of hyperparameters used for each estimated model is
shown in Appendix A.2 in the Supplementary Material (Emedom-Nnamdi et al. (2025)).

6.3. Results and interpretations. We visualize and interpret the estimated additive com-
ponent functions of the action-value functions associated with the behavioral and improved
policies.

I These features include: Age, number of days since surgery, time spent at home (hours), distance traveled (km),
maximum distance from home (km), radius of gyration (km), average cadence, and time spent not moving (hours).
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FIG. 9. A comparison of the marginal component function g4(x) of Q™ (s, a, x) estimated under the behavioral
policy w = mp, vs. the improved policy m = n™*. Each subfigure is associated with a separate nonparametric
additive model of Q (s, a, x), where the state feature representing x is changed. For each action the solid lines
represent the estimate of the marginal component function g4(x) over the range of observed values of x, whereas
the points represent the value of the associated observed rewards (i.e., negative pain score) over x.

6.3.1. Discrete action model. 1In the discrete action model, we estimate a nonparametric
action-value function for each candidate state feature in the set 7, which we represent as x.
Here ‘H consists of the following features: Age, number of days since surgery, time spent at
home (hours), and distance traveled (km).

Marginal state feature effects. In Figure 9 we examine the marginal effect g,(x) of the
estimated action-value function for each candidate state feature x € H under the behavioral
policy 7, and the improved policy 7* constructed using policy iteration. Specifically, g, (x)
estimates the marginal change in long-term negative pain response for each state feature x
under action a. Across each subfigure in Figure 9(a), moving above a patient’s preoperative
baseline number of steps (a = 1) within a given day is associated with a higher immediate
negative pain response in comparison to the converse action (a = 0), regardless of the value
of x. This observation is in line with clinical research that suggests movement at or above a
patient’s preoperative baseline is associated with improved postoperative functional recovery
(Duc et al. (2013), Ozkara et al. (2015), Cote et al. (2019)).

Within each select action, the marginal effect shows a nonlinear change in long-term pain
response. When x = age, Figure 9(a) suggests a marginal increase in long-term negative pain
response for younger and older ages. This observation supports clinical studies suggesting
the existence of age-related pain sensitivity that peaks during mid-life (Yezierski (2012)).
Additionally, when x = time spent at home, our model suggests that spending more time at
home is associated with a nonlinear decrease in negative pain response. Furthermore, when
x = distance traveled, we observe that, regardless of the selected action, traveling less than
150 km is associated with a constant effect on negative pain response, whereas traveling
beyond 150 km within a given day is associated with an increasing effect. We note that this
association is possibly due to survivorship bias present in the model estimates, where a few
patients report minimal pain during periods of excessive travel.

Lastly, when x = days since surgery, our model examines the impact of mobilization as
the number of days since surgery increases. We note the difference in the marginal effect
among both actions is maximized for days closest to the onset of surgery, suggesting that
increased mobilization during early periods of recovery may be associated with decreased
pain response. This finding supports current clinical practice that suggests early mobilization
enhances surgical recovery, a cornerstone of postoperative pain management (Wainwright,
Immins and Middleton (2016), Burgess and Wainwright (2019)).
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FIG. 10. Surface plots representing the difference between the joint component functions f; 1(s;,x) and

fAj,o(sj,x) (i.e., the differential benefit of selecting action a = 1 over a = 0) of QT (s,a, x) estimated under
the behavioral policy m = wp, vs. the improved policy m = m*.

The differences between the marginal effects associated with the behavioral and improved
policies, as shown in Figure 9(b), are subtle. While the underlying trends and ordering of
actions are relatively consistent, the estimated effect sizes appear to be smaller for select
candidate state features under the improved policy (e.g., x = age, time spent at home, or days
since surgery) compared to those of the behavioral policy.

Joint effects betwen state features. In Figures 10 and 11, we examine the joint effect
fja(x,s;) of the estimated action-value function between select state features s; (i.e., age,
time spent not moving, average cadence, and maximum distance from home) and candidate
state features x € H. The value of each joint feature pair corresponds to a nonlinear effect
on an estimated smooth surface representing the additive, long-term change in negative pain
response. We specifically examine the benefit of selecting a given action over its converse by
visualizing the difference between the joint effects under both actions, that s, f; 1 — f; 0. Dif-
ferences greater than zero indicate an additive preference for action @ = 1, over the converse
a=0.

When examining the joint effect between x = days since surgery and s; = age, we observe
that regardless of the value of each corresponding feature, moving more than the preopera-
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state feature representing x is changed.



NONPARAMETRIC ADDITIVE VALUE FUNCTIONS 1467

tive baseline is associated with an increase in negative pain response throughout the domain
of the joint component function. Interestingly, this association is more pronounced among
younger patients under the improved policy. This observation is consistent with clinical re-
search suggesting a relationship between increased postoperative movement and improved
rehabilitation and its potential modification by factors such as age (Ozkara et al. (2015), Duc
et al. (2013), Jaensson, Dahlberg and Nilsson (2019)).

When x = distance traveled and s; = average cadence, maintaining a slower average
walking cadence over longer distances seems to be associated with the suggested action of
moving beyond the preoperative baseline step count. This association is relatively consistent
across both the behavioral and improved policies. However, under the improved policy, a
positive association is also noticed with faster walking cadences near the upper boundary of
total distance traveled. In general, the differential relationship between x = distance traveled
and s; = average cadence could be indicative of the shift from automaticity to executive con-
trol of locomotion, as seen in rehabilitation literature (Clark (2015)). This shift may occur as
distances increase or as walking becomes more challenging (e.g., due to physical exertion,
elevated pain response, or injury), requiring individuals to expend more cognitive effort (i.e.,
executive control) to manage their gait.

6.3.2. Continuous action model. We estimate a nonparametric action-value function for
continuous actions, specifically the number of steps taken, under both behavioral and im-
proved policies.

Marginal effects. In Figure 12 we examine the marginal effect g (a) of the estimated action-
value function. Specifically, g(a) estimates the marginal change in long-term negative pain
response for a select value of a, or number of steps taken. As with the discrete action model,
we observe a positive association between the number of steps taken and the long-term neg-
ative pain response in the continuous action model, especially under the behavioral policy.
For the behavioral policy (as shown in Figure 12(a)), we observe that the marginal effect is
log-shaped and increases with number of steps taken. For the improved policy (Figure 12(b)),
the marginal effect remains relatively constant across the observed number of steps.

Joint effects between state features and actions. In Figures 13 and 14, we examine the
joint effects fj (sj, a) between select state features s; and the continuous action a of the esti-
mated action-value functions. When a = step count and s = time spent at home, we observed
that increased time spent at home beyond 15 hours is associated with a positive increase in
negative pain response across observed values of step count under the behavioral policy. This
trend changes under the improved policy, where the joint effect is maximized when step count
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FIG. 12. The marginal component function g(a) of Q" (s, a) estimated under the behavioral policy T = 7}, vs.
the improved policy m = *. The solid lines represent the estimate of the marginal component function g(a) over
the observed values a, whereas the points represent the value of the associated observed reward (i.e., negative
pain score).
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increases and time spent at home decreases and when step count is minimized and time spent
at home increases. This suggests the joint effect of the improved policy may prioritize two
distinct recovery strategies: patients can either maintain higher activity levels with less time
at home or focus on rest with reduced activity.

Similar to the discrete action model, we observe a differential change in the joint effect
associated with age. Under the improved and behavioral policy, an increase in step count
across age is associated with an relative increase in the negative pain response.

7. Discussion. In this study we introduce a flexible, nonparametric additive representa-
tion of action-value functions. Our approach, KSH-LSPI, distinguishes itself from LSPI by
avoiding parametric assumptions regarding the action-value function’s form beyond additiv-
ity. It achieves this by incorporating ideas directly from local kernel regression and spline
methods. This estimation approach affords KSH-LSPI the ability to capture the nonlinear
additive contribution of each state action feature represented in the model. Furthermore, by
introducing a group Lasso penalty to our primary objective function, we perform componen-
twise variable selection and retrieve a parsimonious representation of the action-value func-
tion. As demonstrated in our simulation, this approach can achieve competitive performance
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metric additive model but represents a different state feature s j on the y-axis.
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against modern neural network methods, particularly in scenarios with limited training data,
while maintaining interpretability.

In the simulation study, we evaluated the performance of the proposed estimator and ex-
amined its sensitivity to changes in its hyperparameters. Future work aims to delve deeper,
examining the estimator’s finite sample properties both theoretically and through further sim-
ulations. The application of the proposed method to the spine disease dataset also provides
new insights into mobilization behaviors that support postoperative pain management and
reaffirmed several well-studied clinical findings. In future applications to spine disease re-
covery, we hope to extend the model by including categorical features, such as gender, race,
and diagnosis, as well as additional clinical features such as medication use.

Our empirical analyses also revealed several methodological limitations. The method ex-
hibits sensitivity to the discount factor, where higher values lead to estimation instability due
to increased weighting of future states. The performance of the method depends on the se-
lection of candidate features, where suboptimal choices can result in performance inferior to
neural network approaches, an effect that becomes more pronounced as the training data in-
creases. In regions of sparse data, component function values trend toward zero, an effect ex-
acerbated by the group Lasso penalty and smaller bandwidth selections. Although the method
effectively captures general functional shapes in well-sampled regions, it exhibits bias when
estimating more complex underlying functions. Additionally, we found notable dependencies
on the selected basis function, where trigonometric basis functions display greater sensitiv-
ity to state dimensions, compared to B-spline bases, and require stronger regularization for
higher discount factors.

Furthermore, our application is not without limitations. The results of our model require
careful interpretation and should not be deemed significant without comprehensive uncer-
tainty quantification. In future adaptations of the KSH-LSPI model, we hope to formalize
our uncertainty concerning our model estimates by incorporating a form of interval estima-
tion. In the offline reinforcement learning setting, uncertainty-based approaches have shown
promise in offline RL by prioritizing risk adverse policies when performing policy improve-
ment (Sonabend-W et al. (2020), O’Donoghue et al. (2017), Ghavamzadeh et al. (2016)). This
naturally brings light to a limitation concerning our method’s approach for policy improve-
ment. After evaluating the current policy using KSH-LSTDQ, our policy improvement step
greedily selects actions that maximize the estimated action-value function. Unfortunately,
function approximation methods in offline reinforcement learning are prone to providing
overly optimistic values for state action pairs that are unobserved in the training data. Hence,
safe policy improvement steps, within the actor-critic framework, that regularize the learned
policy toward the behavioral policy is encouraged in offline reinforcement learning, espe-
cially in healthcare applications (Wang et al. (2020)). Another potential remedy would be
to initialize our algorithm using an initial policy that closely reflects behaviors that would
be suggested by a clinical expert. Initialization using physician-guided policies helps pre-
vent the algorithm from becoming overly optimistic by selecting best actions that physicians
themselves may select (Gottesman et al. (2019)).

The push for interpretability in machine learning models, especially within healthcare con-
texts, is driven by a need for transparency in decision-making processes. Compared to the
powerful, but often less interpretable neural network methodologies, nonparametric additive
models for value-functions offers a representation where decision-making policies can be un-
derstood and scrutinized. Such interpretability is essential for potential clinical applications,
given the need for clinicians to trust and validate the recommendations derived from these
decision-making models. In conclusion, the KSH-LSPI model, although it has areas that re-
quire further refinement, provides a promising framework that aligns with the demand for
both efficacy and transparency.
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SUPPLEMENTARY MATERIAL

Supplement A—Appendices (DOI: 10.1214/24-A0AS1987SUPPA; .pdf). We provide
appendices containing additional information regarding the simulation study and the hyper-
parameter selection for the application to surgical recovery.

Supplement B—Python code (DOI: 10.1214/24-AOAS1987SUPPB; .zip). We provide a
python implementation of the KSH-LSPI algorithm to reproduce the simulations and analysis
performed in the paper. This code is provided as a supplement and is also available at https://
github.com/patricknnamdi/ksh-Ispi.
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